N-96-01 II-A-161 EPA 550/9-81-402

میں ہے۔ مسلم ہوت میں رکھ کے ایک میں ایک ایک ا

CODE OF CURRENT PRACTICES FOR ENFORCEMENT OF MODEL NOISE CONTROL ORDINANCE

September 1981

U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Noise Abatement and Control Washington, D.C. 20460

Under Contract No. 68-01-4430

and Sec.

This report has been approved for general availability. The contents of this report raflect the views of the contractor, who is responsible for the facts and the accuracy of the data presented herein. This report does not necessarily reflect the official views or policy of EPA. This report does not constitute a standard, specification, or regulation.

N-96-01 II-A-161

1. ASCRET 29 10 01 100 13		J. AEGIPIENT'S A	COESSION NO.	
EPA 550/9-81-402		İ		
A TITLE AND SUBTITLE	ہیں سور ہوت کا انہ پر پر زنانا کا ہے جست	S. AEPORT DATE		
Code of Current Practices for Enforcement		70.022	1981	
Noise Ordinances	ent or	6. PERFORMING	ORGANIZATION CODE	
, AUTHORISI		8. PERFORMING	ORGANIZATION REPORT	
F.M. Kassler, M. Alexander		D&M 9647-	- 012	
PERFORMING ORGANIZATION NAME AND ACORESS	*	10. PROGRAM EL	EMENT NO.	
	•		· · · · · · · · · · · · · · · · · · ·	
Cassioni Van Iarean A7016		131, U I N I NA U I N U	HANT NG.	
		68-01-44	30	
12 SPONSORING AGENCY NAME ALL A BORESS	····· <u></u>	12 TYPE OF REP	C . AND PERIOD COVER	
U.S. Environmental Protection inserv		14. SEGNSORING	LIENE COOP	
Washington, D.C. 20460		· EPA	ONA CODE	
		1		
IL SUFFLEMENTARY NOTES				
· .	·			
A Adsi HACT		·····		
This report provides communities int with measurement procedures for effective the theory of sound, terminology, and com criteria are also presented. The second segment of this report pre-	erested in add enforcement. putation metho esents the cur	pting a noise The first se ds. Vibratio rent measurem	e control ordinan agment discusses on measurement and cent proce-	
This teport provides communities int with measurement procedures for effective the theory of sound, terminology, and com- criteria are also presented. The second segment of this report pro- dures. Noise and vibration measurement pro- sources. These include statistical sample weighted and octave band. Both roadway (r ment methods are provided for automobiles, ment procedures are also included for buse recreation vehicles, and refuse collection Sketches of the measurement sites and data are provided for each measurement pro-	erested in add enforcement. putation metho esents the cur rocedures are ling and stead passby) and st , trucks, and es, constructi n vehicles. i forms for re ocedure.	pting a noise The first se ds. Vibration rent measurem presented for y sound techn ationary sound motorcycles. on equipment, porting measu	e control ordinan egment discusses on measurement and sent proce- r stationary noise diques, both ad level measure- Sound measure- model vehicles, red	
This teport provides communities int with measurement procedures for effective the theory of sound, terminology, and com- criteria are also presented. The second segment of this report pro- dures. Noise and vibration measurement pr sources. These include statistical sample weighted and octave band. Both roadway (pr ment methods are provided for automobiles, ment procedures are also included for buse recreation vehicles, and refuse collection Sketches of the measurement sites and data are provided for each measurement pro- ducts are provided for each measurement pro-	erested in add enforcement. putation metho esents the cur rocedures are ling and stead passby) and st , trucks, and es, construction vehicles. i forms for re- pocedure.	pting a noise The first se ds. Vibration rent measurem presented for y sound techn ationary sound motorcycles. on equipment, porting measu	e control ordinan egment discusses on measurement and sent proce- r stationary noise iques, both ad level measure- Sound measure- model vehicles, red	
This teport provides communities int with measurement procedures for effective the theory of sound, terminology, and com- criteria are also presented. The second segment of this report pro- dures. Noise and vibration measurement pro- sources. These include statistical sample veighted and octave band. Both roadway (pre- ment methods are provided for automobiles, ment procedures are also included for buse recreation vehicles, and refuse collection Sketches of the measurement sites and data are provided for each measurement pro- ducts are provided for each measurement pro- ducts are provided for each measurement pro-	erested in add enforcement. putation metho esents the cur rocedures are ling and stead passby) and st , trucks, and es, construction n vehicles. i forms for repocedure.	pting a noise The first se ds. Vibration rent measurem presented for y sound techn ationary sound motorcycles. on equipment.	e control ordinan egment discusses on measurement and tent proce- r stationary noise diques, both ad level measure- Sound measure- model vehicles, red	
This teport provides communities int with measurement procedures for effective the theory of sound, terminology, and com- criteria are also presented. The second segment of this report pre- dures. Noise and vibration measurement pro- sources. These include statistical sample weighted and octave band. Both roadway (re- ment methods are provided for automobiles, ment procedures are also included for buse recreation vehicles, and refuse collection Sketches of the measurement sites and data are provided for each measurement pro- <u>Descriptions</u> Noise Ordinances	erested in add enforcement. putation metho esents the cur rocedures are ling and stead passby) and st , trucks, and es, construction vehicles. i forms for reported to construction cedure.	pting a noise The first se ds. Vibration rent measurem presented for y sound techn ationary sound motorcycles. on equipment, borting measu	e control ordinand egment discusses on measurement and tent proce- r stationary noise diques, both ad level measure- Sound measure- model vehicles, red le_ COSATT Field/Group	
This teport provides communities int with measurement procedures for effective the theory of sound, terminology, and com- criteria are also presented. The second segment of this report pre- dures. Noise and vibration measurement pro- sources. These include statistical sample weighted and octave band. Both roadway (re- ment methods are provided for automobiles, ment procedures are also included for buse recreation vehicles, and refuse collection Sketches of the measurement sites and data are provided for each measurement pro- <u>Descriptions</u> Noise Ordinances Environmental Noise	erested in add enforcement. putation metho esents the cur rocedures are ling and stead passby) and st , trucks, and es, construction n vehicles. i forms for repocedure.	pting a noise The first se ds. Vibration rent measurem presented for y sound techn ationary sound motorcycles. on equipment, borting measu	e control ordinand egment discusses on measurement and tent proce- r stationary noise diques, both ad level measure- Sound measure- model vehicles, red	
This teport provides communities int with measurement procedures for effective the theory of sound, terminology, and com- criteria are also presented. The second segment of this report pre- dures. Noise and vibration measurement pro- sources. These include statistical sample weighted and octave band. Both roadway (re- ment methods are provided for automobiles, ment procedures are also included for buse recreation vehicles, and refuse collection Sketches of the measurement sites and data are provided for each measurement pro- <u>Descriptors</u> Noise Ordinances Environmental Noise Noise Measurement Methods	erested in add enforcement. putation metho esents the cur rocedures are ling and stead passby) and st , trucks, and es, construction venicles. i forms for re- bocedure.	pting a noise The first se ds. Vibration rent measurem presented for y sound techn ationary sound motorcycles. on equipment, porting measu	e control ordinand egment discusses on measurement and eent proce- r stationary noise diques, both ad level measure- Sound measure- model vehicles, red le COSATT Field/Group	
This teport provides communities int with measurement procedures for effective the theory of sound, terminology, and com- criteria are also presented. The second segment of this report pre- dures. Noise and vibration measurement pro- sources. These include statistical sample weighted and octave band. Both roadway (re- ment methods are provided for automobiles, ment procedures are also included for buse recreation vehicles, and refuse collection Sketches of the measurement sites and data are provided for each measurement pro- <u>Descriptors</u> Noise Ordinances Environmental Noise Noise Measurement Mechods Vibration Measurements	erested in add enforcement. putation metho esents the cur rocedures are ling and stead passby) and st , trucks, and es, construction venicles. i forms for reported b. COMMENT ANALYSM b. COMMENT ANALYSM	pting a noise The first se ds. Vibration rent measurem presented for y sound techn ationary sound motorcycles. on equipment, borting measu	e control ordinand egment discusses on measurement and eent proce- r stationary noise diques, both ad level measure- Sound measure- model vehicles, red le COSATT Field/Group	
This teport provides communities int with measurement procedures for effective the theory of sound, terminology, and com- criteria are also presented. The second segment of this report pro- dures. Noise and vibration measurement pro- sources. These include statistical sample weighted and octave band. Both roadway (re- ment methods are provided for automobiles, ment procedures are also included for buse recreation vehicles, and refuse collection Sketches of the measurement sites and data are provided for each measurement pro- <u>Descriptions</u> Noise Ordinances Environmental Noise Noise Measurement Mechods Vibration Measurements Model Community Noise Control Ordinance	erested in add enforcement. putation metho esents the cur rocedures are ling and stead passby) and st , trucks, and es, construction venicles. i forms for re- bocedure.	pting a noise The first se ds. Vibration rent measurem presented for y sound techn ationary sound motorcycles. on equipment, borting measu	e control ordinand egment discusses on measurement and eent proce- r stationary noise diques, both ad level measure- Sound measure- model vehicles, red	
This teport provides communities int with measurement procedures for effective the theory of sound, terminology, and com- criteria are also presented. The second segment of this report pro- dures. Noise and vibration measurement pro- sources. These include statistical sample weighted and octave band. Both roadway (re- ment methods are provided for automobiles, ment procedures are also included for buse recreation vehicles, and refuse collection Sketches of the measurement sites and data are provided for each measurement pro- <u>Descriptions</u> Noise Ordinances Environmental Noise Noise Measurement Methods Vibration Measurements Model Community Noise Control Ordinance Stationary Noise Sources	erested in add enforcement. putation metho esents the cur rocedures are ling and stead passby) and st , trucks, and es, constructi n venicles. i forms for re- bcedure.	pting a noise The first se ds. Vibration rent measurem presented for y sound techn ationary sound motorcycles. on equipment, borting measu	e control ordinan egment discusses on measurement and tent proce- r stationary noise diques, both ad level measure- Sound measure- model vehicles, red	
This teport provides communities int with measurement procedures for effective the theory of sound, terminology, and com- criteria are also presented. The second segment of this report pro- dures. Noise and vibration measurement pro- sources. These include statistical sample weighted and octave band. Both roadway (re- ment methods are provided for automobiles, ment procedures are also included for buse recreation vehicles, and refuse collection Sketches of the measurement sites and data are provided for each measurement pro- <u>Descriptors</u> Noise Ordinances Environmental Noise Noise Measurement Methods Vibration Measurements Model Community Noise Control Ordinance Stationary Noise Sources Mobile Noise Sources	erested in add enforcement. putation metho esents the cur rocedures are ling and stead passby) and st , trucks, and es, constructi n venicles. i forms for re- pocedure.	pting a noise The first se ds. Vibration rent measurem presented for y sound techn ationary sound motorcycles. on equipment, borting measu	e control ordinan egment discusses on measurement and eent proce- r stationary noise diques, both ad level measure- Sound measure- model vehicles, red	
This teport provides communities int with measurement procedures for effective the theory of sound, terminology, and com- criteria are also presented. The second segment of this report pro- dures. Noise and vibration measurement pro- sources. These include statistical sample weighted and octave band. Both roadway (pre- ment methods are provided for automobiles, ment procedures are also included for buse recreation vehicles, and refuse collection Sketches of the measurement sites and data are provided for each measurement pro- <u>Descaurtors</u> Noise Ordinances Environmental Noise Noise Measurement Methods Vibration Measurements Nodel Community Noise Control Ordinance Stationary Noise Sources Noise Noise Sources Noise Noise Sources	erested in add enforcement. putation metho esents the cur rocedures are ling and stead passby) and st , trucks, and es, constructi n vehicles. i forms for re- poedure.	pting a noise The first se ds. Vibration rent measurem presented for y sound techn ationary sound notorcycles. on equipment, borting measu	e control ordinan agment discusses on measurement and tent proce- r stationary noise diques, both ad level measure- Sound measure- model vehicles, red	
This report provides communities int with measurement procedures for effective the theory of sound, terminology, and comporteria are also presented. The second segment of this report produces. Noise and vibration measurement provided for automobiles, ment methods are provided for automobiles, ment procedures are also included for buse recreation vehicles, and refuse collection Sketches of the measurement sites and data are provided for each measurement provided for buse Noise Ordinances Noise Ordinances Noise Measurement Methods Vibration Measurements Model Community Noise Control Ordinance Stationary Noise Sources Noile Noise Sources Noile Noise Sources Noile Noise Sources	erested in add enforcement. putation metho esents the cur rocedures are ling and stead passby) and st , trucks, and es, constructi n vehicles. i forms for re ocedure.	pting a noise The first se ds. Vibration rent measurem presented for y sound techn ationary sound notorcycles. on equipment, borting measu	e control ordinan egment discusses on measurement and tent proce- r stationary noise iques, both ad level measure- Sound measure- . model vehicles, red	

,

,

DA Ferre 2020-1 (5-73)

•

TABLE OF CONTENTS

Pace

÷

TABLE OF CONTENTS...... i

FIRST SEGMENT - THEORY

1.0	INTR	ODUCTION	1
	1.1	BACKGROUND	l
	1.2	PURPOSE AND SCOPE	2
	1.3	ORGANIZATION	3
	1.4	REFERENCES	11
2.0	7000	STICAL THEORY AND TERMINOLOGY	12
	. 2.1	INTRODUCTION	12
	2.2	TERMINOLOGY	12
	2.3	FUNDAMENTAL ASPECTS OF SOUND MEASUREMENTS	14
		2.3.1 The Nature of Sound	14
		2.3.2 A-Weighted Sound Level	13
		2.3.3 Combining Sound Levels	20
•		2.3.4 Equivalent Sound Lavel, L _{eq}	22
		2.3.3 Day-Night Sound Lavel, L _{dn}	23
		2.3.5 Distance Attenuation	24
		2.3.7 Effect of Reflective Surfaces	27
	2.4	BIBLIOGRAPHY	31
,	2.5	References	33
3.0		RUMENTATION	34

1.111

÷

··· ·

i

TABLE OF CONTENTS (Continued)

.....

1

i. T

.

.

.

コアフォ フンゴン シンシン

i

			Page
	3.1	INTRODUCTION	34
	3.2	SOUND LEVEL METERS	34
	3.3	COMMUNITY NOISE ANALYZERS (AMPLITUDE DISTRIBUTION ANALYZERS)	42
	3.4	WINDSCREEN	43
	3.5	ACOUSTIC CALIERATOR	44
	3.6	ANEMOMETER	46
	3.7	TACIOMITIR	46
	3.8	REFERENCES	47
4.0	VIBR	ATION	48
	4.1	ENTRODUCTION	48
	4.2	VIBRATION CRITTRIA	49
	4.3	ACCELEROMETER AND VIBRATION METER	51
	4.4	REFERENCES	53

SECOND SEGMENT - CURRENT PRACTICES

۰.,

- ----

PRACTICAL SUGGESTIONS FOR USERS OF THESE PRACTICES

	PRACTICES	54
5.0	STATICNARY NOISE SCURCES	57
6.0	AMBIENT SCUND	91
7.0	Altomobiles	92
3.0	3USES	.08
9.0	CONSTRUCTION EQUIPMENT	21
10.0	MOTORBOATS	.24
11.0	MOTORCYCLES	43

<u>. :</u>

TABLE OF CONTENTS (Continued)

		Pace
12.0	FOWERED MODEL VEHICLES	148
13.0	RECREATION VEHICLES	155
14.0	REFUSE COLLECTION VEHICLES	164
15.0	TRUCKS	172

· ···· ····

- - -

.-- -

• • •

:

÷

iii

DICT

>>>

24

Ala and alternation which is the contraction of the contraction of the contraction of the second second second

FIRST SEGMENT • THEORY

1.0 INTRODUCTION

1.1 BACKGROUND

: 1

This Code of Current Measurement Practices for Enforcement of Noise Ordinances is a compilation of the most practical and effective procedures being used by State and local governments in their noise control enforcement efforts. Over 30 State and local officials reviewed these procedures for technical feasibility, practicality, and ease of enforcement. However, some of the procedures in the areas of construction, recreational vehicle, powered model vehicles and motorboat noise measurements have not been fully tested nor evaluated by State and local noise programs. These specific procedures have either been used in engineering design by applicable industries and technical societies or are included due to their potential value. As such, the appropriateness of all of these specific procedures for use in State and local enforcement needs to be confirmed and substantiated through field testing studies. EPA intends to initiate a field program in the near future to test the reliability and validity of all of these procedures, obtain data on sound levels emitted by sources, and determine the costs of administering each procedure.

This document contains all of the procedures necessary to cover the provisions in most State and local ordinances. Each procedure represents the state-of-the-art in local noise enforcement. It is the intention of EPA to publish this document in order that State and local officials can use these procedures as a valuable reference in developing their own

÷1]

measurement codes. After EPA concludes its planned testing program, a revised and final <u>Code of Recommended Practices</u> for <u>Enforcement of Local Noise Ordinances</u> will be published.

To help communities wishing to adopt comprehensive ordinances, the U.S. Environmental Protection Agency has introduced the "Model Community Noise Control Ordinance." ⁽¹⁾ The "Model Noise Ordinance" is intended to be used as a guide and basic tool for large and small communities in their efforts to properly control and restrict noise. The Model Noise Ordinance is structured to best meet the local needs and conditions of the community.

This Code, distributed by the U.S. Environmental Protection Agency, is intended as a guideline for uniform measurement procedures for use with either the EPA Model Community Noise Control Ordinance or with an ordinance of the community's choosing. The procedures presented herein should not be confused with procedures adopted by EPA for regulatory purposes and point of sale certification procedures.

1.2 PURPOSE AND SCOPE

The purpose of this document is to provide communities interested in adopting a noise control ordinance

2

with a compilation of the most effective, feasible and inexpensive local noise control measurement procedures for effective enforcement. This Code of Current Practices establishes tentative guidelines for the measurement and reporting of sound levels emitted by mobile and stationary noise sources.

This Code deals principally with the measurement of noise transmitted through air to a receiver. Noise measurement methods are provided for noise sources listed below:

- Automobiles
- Buses
- Construction Equipment
- Motorboats
- Motorcycles
- • Powered Model Vehicles
- Recreation Vehicles
- A Refuse Collection Vehicles
- Trucks
- Stationary Facilities, i.e., Industrial Plants Air Conditioners, and Construction Sites

In addition, since the Model Noise Ordinance contains, in Article X, provisions for restricting the development of certain land use types (i.e., residential structures) due to excessive ambient noise, procedures are provided for measuring the outdoor day/night sound level, L_{dn}.

Vibration measurement procedures as well as criteria are also provided.

1.3 ORGANIZATION

ì

This Code of Current Practices is divided into two principal parts. <u>Sections 2.0 through 4.0</u> discuss the theory of sound and vibration and describe the instruments which are used to make the measurements presented in this Code.

والمحكور الأرام وردامتها متناصح فتتناك

Section 4.0 discusses vibration and instrumentation and also includes vibration criteria recommended by the Committee on Hearing, Bioacoustics and Biomechanics of the National Research Council. Vibration procedures and criteria are recommended in this document, although the Model Ordinance did not directly address this most important area.

The second part, composed of Sections 5.0-15.0, contains the sound measurement methods which may be used to enforce a State or local noise ordinance. These sound measurement methods are grouped as follows:

- a. Stationary noise sources
- b. Sound quality for land use assessment

. .

c. Mobile noise sources

A thorough survey of the literature was performed to identify existing measurement techniques. State and local enforcement agencies; domestic and foreign standards organizations, such as SAE, ISO, ASA; and industrial associations and federal agencies with noise control jurisdictions were contacted and asked to provide the measurement techniques used or recommended. They were also asked to suggest measurement procedure formats. Matrices for comparing each of the major aspects of the techniques were prepared for each source category. The techniques were evaluated using these matrices in terms of their accuracy, ease of implementation, cost effectiveness and applicability to a community's needs. The best features of each were abstracted and/or modified as appropriate, to provide a single procedure for each source category.

4

The completed noise measurement procedures were sent to enforcement officials, industry groups and acoustical experts for comments. The comments were evaluated and, where appropriate, were incorporated into the final document. The final Code reflects the needs and desires of the enforcement people who will eventually use it.

The document was prepared so that each measurement procedure could be used independently. Each measurement procedure contains all the necessary information for its implementation. A common format (with slight deviations) is used throughout. This format contains:

> • Purpose • Equipment • Measurement Location • Personnel • Test Site • Test Procedure

Methods to measure stationary noise source sound levels are presented in <u>Section 5.0</u>. The Model Community Noise Control Ordinance contains articles limiting the noise emitted from construction sites [Article VI, Section 6.2.6(b)] and from a stationary source [Article VIII, Section 8.1 and Section 8.2]. These recommended ordinance requirements can be enforced by four types of test procedures which:

- a. measure the equivalent A-weighted sound level, $\rm L_{eq},^*$ and the statistical sound levels, $\rm L_X,$
- b. measure the maximum A-weighted sound level, Lmax'

*See Section 2.2 for terminology.

c. measure the octave band sound pressure level spectrum, and

d. measure the impulse sound level.

A vibration measurement procedure is also discussed in <u>Section 5.0</u>. Operating or permitting the operation of any device that creates vibration above perception threshold levels is a prohibited act discussed in Article VI, Section 6.2.12 of the Model Community Noise Control Ordinance. The measurement procedure is presented in <u>Section 5.0</u>. Perception threshold criteria are discussed in <u>Section 4.0</u>, since communities may want to stipulate specific requirements in their legislation.

The ambient sound level, or sound quality, is an important factor to consider in selecting land for the development and building of habitable and institutional structures and recreational areas. Land-use restrictions are presented in Article X of the Model Community Noise Control Ordinance.

A method of community noise sampling requiring only a sound level meter is presented in <u>Section 6.0</u>. The measurement method allows a community to assess the ambient sound climate with a minimum investment in sound measurement equipment. The sampling technique provides cumulative distribution levels as well as the equivalent sound level, L_{eq} .

For those communities interested in noise measurement procedures to survey the noise environment throughout an entire community, a <u>Community Noise Assessment Manual</u>: <u>Acoustical</u> <u>Survey</u>, is available from the <u>Mational Technical Information Service</u>.

ومحج والمجرورة أوار والمحج والمحارية والمعتان

б

The second se

The second group of sound measurement procedures deals with mobile on and off road vehicles. The measurement procedures for Automobiles, <u>Section 7.0</u>, Buses, <u>Section 8.0</u>, Motorcycles, <u>Section 11.0</u>, and Trucks, <u>Section 15.0</u>, are similar. Two measurement procedures are provided. One measures vehicle noise while the vehicles are operated on local streets, roads, or highways. This measurement method provides vehicle sound levels for enforcement of Article IX, Section 9.1 which specifies the maximum sound levels which a motor vehicle can emit while operating on a public right-of-way.

A second type of noise measurement procedure is also provided for stationary operation and testing of the vehicle's noise emission levels. It requires the motor vehicle to be operated while stationary at a qualified test site. This latter method is simple to accomplish and provides sound level data which are repeatable and legally defensible. The stationary test procedure is similar to one of the U.S. Department of Transportation interstate motor carrier noise measurement procedures. It is slightly modified for automobiles, buses, and motorcycles. A community can choose the methodology which is most appropriate, considering the available resources, manpower, and ordinance requirements. Both sets of procedures can be used if a community desires a vehicle in use test and a separate procedure for certification during inspections.

A noise measurement procedure for construction equipment noise is presented in <u>Section 9.0</u>. Measurement of the noise emitted from individual units of construction equipment

7

DECT PORV AVAILANT

is difficult to accomplish at an operating construction site. A noise measurement procedure is described requiring that the measurement be made at seven meters from the device. If high ambient noise conditions exist, measurements are made at closer distances or an adjustment is applied for the contribution of sources other than the unit under test.

This method is based on recommended practices by the Society of Automotive Engineers^{2,3} and Compressed Air and Gas Institute⁴ consensus standards. The federal Environmental Protection Agency has also developed measurement methods used for product verification and enforcement of new equipment (point of sale) noise standards.^{5,6} Both the technical society and Environmental Protection Agency methods require test sites which exhibit numerous acoustical environmental constraints. For example, the surface between noise source and microphone must be sealed asphalt with no large reflecting surfaces within 30 meters of the microphone or the equipment being measured.

Many construction sites do not meet this constraint and do not qualify as valid noise emission measurement sites. The measurement method presented in this Code is a pragmatic, cost-effective means for community noise enforcement and not necessarily a procedure which provides the required constraints needed for <u>new</u> product noise level verification and enforcement.

A motorboat noise measurement procedure is presented in <u>Section 10.0</u>. It is based on the SAE noise measurement method for motorboats. Numerous tests, conducted by and

ne na serie de la company d

8

BERT 2004 1111

reported by the motorboat industry indicate the effectiveness of the test procedure. Operating motorboats in excess of regulated noise levels is discussed in Article VI, Section 6.2.15 of the Model Community Noise Control Ordinance.

A method of measuring the noise emissions of powered model vehicles is presented in Section 12.0. The Model Community Noise Control Ordinance suggests that maximum sound levels emitted by powered model vehicles (such as model airplanes) "...shall be measured at a distance of _____ feet (meters) from any point on the path of the vehicle." This type of measurement may be quite difficult to achieve. Instead, an alternative measurement method is presented. Most models are very small noise sources and can be measured in a stationary mode at 1 meter from the test model. The measurement procedure allows the test to be performed at or near recreational areas where the models will be used with minimum noise interference from other nearby noise sources. The data obtained from this test method can be used to extrapolate the noise from the model (in flight, for example) to noise sensitive land use or the recreational area boundary.

Section 13.0 provides a sound emissions measurement procedure for recreational motorized vehicles. Recreational motorized vehicles operating off public rights-of-way (such as motorbikes) use small, air cooled two- or four-stroke engines. Because of space, weight, and power limitations, the mufflers employed on these vehicles are often very rudimentary. The

્ 9

Ì

principal noise offender on these vehicles is typically the exhaust. These vehicles are addressed by Article IX, Section 9.2 of the Model Community Noise Control Ordinance. Mobile or acceleration tests are too complex and require too extensive a test area. Snowmobiles are also included in this category (Recreation Vehicles). The snowmobile industry and SAE have developed a consensus standard which requires a large test site covered by either packed snow or turf (primarily grass up to a maximum of 7.5 cm [3 in.] in height).⁷ A procedure requiring sound measurements at 0.5 meter (20 in.) from the stationary vehicle's exhaust is presented in <u>Section 13.0</u>.

Section 14.0 presents a methodology for measuring noise emissions of refuse collection vehicles. Refuse collection vehicles are heavy trucks with a trash compacting mechanism mounted to the frame. Excessively high noise from compactors is considered a prohibited act in the Model Community Noise Control Ordinance, Article IX, Section 9.1.3. The noise from the compactor is measured in a manner similar to EPA's recently proposed noise emission standard for truck mounted solid waste compactors. * The sound measurement procedure presented requires sound measurements to be made at four locations at right angles to each other around the vehicle, while the vehicle is stationary during a normal compaction cycle. In this way, all the significant noise producing components of the vehicle are considered. Since it would be difficult to standardize the amount of refuse to use during the test, the sound measurements are made with the compactor empty.

10

.

.

an and the state of the state o

.

.

,

فسيعهد ويروز والراري والدي والمعاد فتعاف فست

1.4 REFERENCES

- (1) "Model Community Noise Control Ordinance," U.S. Environmental Protection Agency, Washington, DC 20460, Report EPA 550/9-76-003, September 1975.
- (2) "Exterior Sound Level Measurement for Mobile Construction Equipment," Society of Automotive Engineers, Recommended Practice J88a, 1975.
- (3) "Operator Sound Level Measurement Procedure for Powered Mobile Construction Equipment - Work Cycle Test," SAE Draft Recommended Practice XJXXX, 1975.
- (4) "CAGI-PNEUROP Test Code for the Measurement of Sound from Pneumatic Equipment," Compressed Air and Gas Institute, 1969.
- "Background Document for Portable Air Compressors," U.S. Environmental Protection Agency, Washington, DC 20460, EPA 550/9-76-004, December 1975.
- "Background Document for Medium and Heavy Truck Noise Emission Regulations," U.S. Environmental Protection Agency, EPA 550/9-76-008, December 1975.
- (7) "Operational Sound Level Measurement Procedure for Snow Vehicles," Society of Automotive Engineers Procedure J1161, November 1976.
- (8) "Information in Support of the Proposed Regulation for Truck Mounted Solid Waste Compactors," U.S. Environmental Protection Agency, EPA 550/9-77-204, 1977.

·11

and when a second s

2.0 ACOUSTICAL THEORY AND TERMINOLOGY

2.1 INTRODUCTION

The purpose of this section is to acquaint the user of this Code of Current Practices with the theory and terminology used in the development of the noise measurement methods discussed later in this report. The information presented in this section is intended for indoctrination and reference. The user of this Code who desires additional details and theoretical depth should refer to text books and reports presented in a partial bibliography found at the conclusion of this section.

2.2 TERMINOLOGY

A second se

Most of the technical terms, used throughout the "Model Ordinance" and the Code of Current Practices, are presented below. Expanded and additional definitions may be found in the text books and reports listed in the bibliography at the end of this section.

> Acceleration is the time rate of change of velocity. It is a vibration quantity as used in this Code. Units of acceleration are meters per second per second (abbreviated m/sec²) or multiples of gravity acceleration, "g". By international agreement, the value of 9.806 m/sec² (32.17 ft/sec²) has been chosen as the standard acceleration due to gravity.

Ambient Sound is the all-encompassing sound associated with a given environment, usually a composite of sounds from many sources near and far.

<u>Average Sound Level</u> is the same as equivalent sound level.

<u>A-weighted Sound Level</u> is the sound level measured after the ambient sound is filtered by the A-weighting network (see Section 2.3.2).

Background Ambient Sound is the all-encompassing sound associated with a given environment excluding the source being studied (i.e., automobiles, air conditioners, industrial plants and others).

<u>Day-Night Sound Level</u>, L_{dn}, is the 24-hour equivalent sound level, in decibels, dB, obtained after addition of 10 decibels to nighttime (10:00 P.M. to 7:00 A.M.) sound levels.

Decibel, dB, is a unit of sound level (and other levels as well). It is based on ten times the logarithm (base 10) of the ratio of two quantities, one of which may be a reference quantity.

Equivalent Sound Level, Leq, is the A-weighted sound level containing the same sound energy as the time-varying sound. Technically, the equivalent sound level in decibels (dB) is the level of the A-weighted mean square sound pressure during the stated time period referenced to the square of the standard reference sound pressure of 20 microPascals.

<u>Impulsive Sound</u> is a brief increase in sound level (generally more than 10 decibels) above the background ambient sound level. The duration of a single impulse is usually less than one second. Familiar impulsive sounds are dynamite blasts, gun firing, and pile driving.

Noise Level is the same as sound level for sound in air. Some people use "noise" only for undesirable or unwanted sound. A sound level meter, however, does not measure people's desires; therefore, to prevent misunderstandings, it is suggested that the quantity measured by a sound level meter be called sound level rather than noise level.

<u>Percentile Sound Level</u>, L_X , is the sound level exceeded X-percent of the time during the period of observation. For example, L_{10} is the A-weighted sound level exceeded ten percent of the time during the period of observation.

والمربوع والمراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

 $\frac{1}{r}$

C. L. S. Sandaran

RECT CODV AVIAN

Ņ

ī

<u>Pure Tone</u> is a sound distinctly heard as a single pitch (frequency) or series of single pitches. Examples are screech, whine, whistle, etc.

<u>Sound Level</u>, L_A, is the weighted sound pressure level obtained by the use of standard filters (electrical circuits). The most commonly used filter is the A-weighting network (see Section 2.3.2).

Sound Pressure is the instantaneous pressure above or below a static pressure (barometric pressure) due to the sound wave. The root mean square (rms) sound pressure is the square root of the average of the square of the instantaneous sound pressures.

Sound Pressure Level is defined as 20 times the logarithm (base 10) of the ratio of the root mean square sound pressure to a reference standard sound pressure of 20 microPascals. It can be noted as

$$L_p = 20 \text{ Log}_{10} \frac{P_{rms}}{P_0}$$

where P_o is the standard reference sound pressure - 20 microPascals.

<u>Steady Sound</u> is a sound whose level remains essentially constant (variations equal to or less than 6 dB) during the period of observation.

<u>Vibration</u> is an oscillatory motion described by either displacement, velocity, or acceleration with respect to a given reference.

<u>Wavelength</u>, λ , is the distance between two successive wavefronts in a periodic wave.

المراجع فاستنقا بعدالية

فالهير المرجورية النام والعاد والمناه والمتعادين

2.3 FUNDAMENTAL ASPECTS OF SOUND MEASUREMENTS

2.3.1 The Nature of Sound

.

DECT OODV ANA

1

Sound, in its simplest terms, is a form of aerodynamic vibration which transmits energy from one point in space to another. It is a pressure fluctuation to which the ear responds. Sound waves behave like the ripples in a pond produced by throwing a stone into the water. Like the ripples,

sound waves move away from the source at a constant speed. The mode of propagation is momentum exchange with no net transfer of matter away from the source.

The speed of sound in air varies slightly with temperature and humidity, but for most purposes may be regarded as having a constant value of 340 m/sec (1120 ft/sec).

A physical description of sound or noise, whether from a single source or from sources in combination, requires a knowledge of certain fundamental parameters. The five basic parameters to be considered in the description of sound include:

- Magnitude
- Frequency Distribution
- Directional Distribution
- Temporal Distribution*
- Operating Conditions

Of these five basic parameters, the two, which are used most often to define sound, are its frequency content (pitch) which is expressed in Hertz (one Hertz is equal to one cycle/second) and its amplitude. Since sound is a pressure phenomenon, the amplitude of a sound should be expressed in units of pressure but is commonly expressed in decibels.

To develop a clearer idea of the magnitude of common sound signals, Figure 2.1 is presented. Note that the range of sound pressure perceived by man is quite large, on the order of 1:1,000,000.

*For time-varying sound

Figure 2.1 Magnitude of Some Typical Sounds

and and the second s

Due to the large range of sound pressures encountered (see Figure 2.1), it is more convenient to express the sound pressures on a logarithmic scale. This compression in scale to smaller numerical values is easier to use. The sound pressure level is defined as:

$$L_p = 10 \log_{10} \frac{p^2}{(p_0^2)} dB = 20 \log (\frac{p}{p_0}) dB$$

where p is the square root of the mean of the square (rms) of the instantaneous sound pressures, and p_0 is a reference pressure.

The internationally agreed upon standard reference pressure is 20 micropascals which corresponds approximately to the faintest sound that an average young adult can hear in a quiet surrounding. The important point to remember is that the decibel is non-dimensional and is a ratio of two pressures. The sound pressure level L_p in decibels relates to magnitude only because of the reference pressure.

Sound energy can be analyzed (using electronic instruments) in bands of frequency. The preferred bands¹ for acoustic measurements cover the audible range (nominally 20-20,000 Hz) and consist of 10 frequency ranges. The frequency range of each band increases as the frequency increases. The upper frequency of each band is <u>twice</u> the lower frequency. For example, the 1000 Hz octave band extends from 707 Hz to 1414 Hz. The preferred octave band center frequencies are 31.5 Hz, 63 Hz, 125 Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 8000 Hz, and 16000 Hz. Note the doubling here as well.

.17

and the second
t

For more detailed analysis of a sound's frequency content, still narrower bands, such as 1/3 or 1/10 octave bands, are used.

2.3.2 A-Weighted Sound Level

The apparent loudness that we attribute to a sound varies not only with the sound pressure but also with the frequency of the sound. This is further complicated by the fact that the frequency dependence is also a function of sound pressure. Since loudness is a function of level and frequency, three standard criteria were developed many years ago to attempt to convert a sound level meter to a loudness meter (somewhat unsuccessfully). These three criteria are shown in Figure 2.2. Sound levels are measured by sound level meters using electrical domponents called networks. Most common of these is the A-weighted network which attempts to reflect the human ear's decreased sensitivity to low frequencies at normal sound levels. A sound measured with a device using such a network provides a reading referred to as an A-weighted sound level.

To determine the A-weighted sound level given the octave band spectrum of sound, factors are subtracted from the sound pressure level values in each octave band, and the octave band sound pressure levels then added on an energy basis. These corrections, obtained from the A-weighted response curve shown in Figure 2.2., are tabulated below:

1.8,

الم المراجع بالمراجع المراجع

.

Octave Band	A-Weighted
Center Frequency	Corrections
Hz	dB
31.5	-39.4
63	-26.2
125	-16.1
250	-8.6
500	-3.2
1000	0
2000	+1.2
4000	+1.0
8000	-1.1

2.3.3 Combining Sound Levels

Very often there are two independent sound sources radiating concurrently. To determine the combined effect of the two sources, their contribution is added on an energy basis (sound pressure levels are not added directly but instead are converted to mean square pressure terms, which are added and then reconverted to decibels). One method of combining sound levels is the use of the graph in Figure 2.3. By knowing the two levels and therefore the difference between the two, the increment to be added to the higher level is determined. This yields the resultant sound level. This increment is read directly from the graph.

÷...

المراجع ووالانتخاص بالأفوا فيتار متهو بمتهدوسته المتابات

Constant and a second second

The graph presented in Figure 2.3 is based on the following relationship:

 $L_{pt} = 10 \log [10^{L_{pl}/10} + 10^{L_{p2}/10}] dB$

The total sound level L_{pt} can easily be determined using a pocket calculator containing powers of ten, 10^{x} , and logarithm functions.

2.3.4 Equivalent Sound Level, Leg

Environmental noise is not steady but fluctuates considerably in level with time. To fully characterize the exposure of an individual to time-varying sound levels, a history or cumulative distribution of the sound levels would be necessary. This requires a large number of samples. To simplify matters, noise from both individual events and quasi-steady state sources are averaged. This time weighted average is known as the equivalent sound level (L_{eq}) . The equivalent sound level is equivalent to (or equal to) the <u>steady</u> noise level which in a stated period of time would contain the same acoustic energy as the time-varying sound. The mathematical definition of L_{eq} for an interval T is:

$$L_{eq} = 10 \text{ Log } \left(\frac{1}{T} \int_{0}^{T} \frac{p^2(t)}{p_0^2} dt\right) dB$$

where p(t) is the time-varying rms sound pressure and p_0 is the reference pressure.

An approximation to this integral is:

 $L_{eq} = 10 \ Log_{10} \ (\frac{1}{T} \sum_{i=1}^{n} t_i \ 10^{\frac{L_i}{10}})$

where L_i is the sound level for time interval i t_i is length of time interval i and T is the period of interest.

2.3.5 Day-Night Sound Level, Ldn

The development of equivalent sound level was followed by the development of the day-night sound level. This is the average A-weighted sound level during a 24-hour time period with a 10-decibel weighting (penalty) applied to the nighttime sound levels (10 P.M. to 7 A.M.). This may be expressed mathematically as:

 $L_{dn} = 10 \log \frac{1}{24} ([15(10^{L_d/10}) + 9(10^{(L_n+10)/10})])$

where $L_d = L_{eq}$ for the daytime (0700-2200 hours) and $L_n = L_{eq}$ for the nighttime (2200-0700 hours) This computation is easily accomplished using a pocket calculator. The following example illustrates the method used to

compute L_{dn}:

Example: The day and night sound levels are 58 dB and 52 dB, respectively.

 $10^{\frac{58}{10}} = 630957$

This value must be multiplied by 15.

 $15 \times 630957 = 9464360$

Ten decibels are added to the night sound level. The result is divided by 10 and raised to the power of ten.

 $10^{(52+10)/10} = 1584893$

This value must be multiplied by 9

 $9 \times 1584893 = 14264039$

23

The two factors are added and divided by 24.

 $\frac{9464360 + 14264039}{24} = \frac{23728399}{24} = 988683$

 $L_{dn} = 10 \text{ Log } 988683 = 60 \text{ dB}$ Obviously, this example is more easily accomplished using a calculator.

2.3.6 Distance Attenuation

Sound waves for many situations may be approximated by a free spherical progressive wave. This is analogous to waves propagating radially from a small sphere. The emitted sound intensity spreads out from the source with continuously increasing radii. In the absence of any losses (absorption), the sound power must remain constant (conservation of energy). Therefore, the intensity at a given distance from the source must be proportional to the inverse of the spherical surface area (radius squared). The sound level attenuation as a function of distance can easily be computed. The "inverse square law" of attenuation, as it is commonly called, is 6-decibel reduction for each doubling of distance from its origin. Figure 2.4 can be used for determining the sound pressure level at different source-receiver distances.

For example, if the sound level at 200 meters is 92 dB, the sound level at 950 meters is obtained by entering the graph at a ratio of 4.75 and reading 13.5 dB attenuation. Subtracting 13.5 from 92 provides the sound level of 78.5 dB. Alternately, a calculator can be used for determining distance attenuation.

24

į

םבפל רחתי זווזוו זהו ה

Attenuation = 20 Log
$$(\frac{950}{200})$$

L_{p950} = L_{p200} - 20 Log $(\frac{950}{200})$ = 92 - 20 Log $(\frac{950}{200})$
L_{p950} = 92 - 13.5 = 78.5 dB

Note that this relationship only holds for small sources or for large distances (three times the major dimensions) from large sources.

Sound level attenuation calculated by this procedure assumes free field conditions and does not include the attenuation due to air absorption and effects of ground cover, such as trees and brush. Discussions of these additional attenuation effects which can be significant over very large distances are available in several references found in the bibliography at the end of this section.⁽²⁾ In urban areas where many reflecting surfaces and free field conditions do not exist, attenuation may be less than 6 dB/DD. Caution, therefore, should be exercised in using these figures.

Traffic noise for the flowing highway traffic does not radiate in a similar manner. The sound propagates not as if from a small sphere, but as if from a cylinder. The attenuation factor for this case is approximately 3 decibels for each doubling of distance. For certain traffic flows, the attenuation factor is between the spherical and the cylindrical. An often used quantity for traffic noise attenuation with distance is 4.5 decibels for each doubling of distance.

فقيف المعادر أورين المرارية الموارا متعيده مارات المهامر فتعقب

2.3.7 Effect of Reflective Surfaces

Often conditions at a measurement location are far from ideal. A microphone placed too close to a sound reflecting surface will respond to both the sound traveling directly from the source and the sound reflecting from the surface. An error, as much as about 4 decibels, can result.

Small objects, which are no closer to the source than 5 meters, chain link fences or low-lying vegetation should not be considered reflecting surfaces.

For situations where reflecting surfaces affect the measurement accuracy, approximate corrections for reflections can be made. These corrections, based on the distance the microphone or source is from the reflecting surface, are presented in Table 2.1.³ The corrections are <u>subtracted</u> from the measured values.

The special case for reflecting surfaces near roadways has been investigated and a nomograph has been prepared, see Figure 2.5.⁴ Note that corrections for reflecting surfaces on either side of the roadway can be found. The examiner must estimate the distance (D) between the centerline of the lane of travel and the <u>nearest</u> reflecting surface. The distance (L) from the microphone to its nearest reflecting surface is also determined. To determine the correction, locate the two distances on their respective axes on the nomogram, Figure 2.5. Connect the two points by a straight line.

27

Table 2.1 Correction Factors to be <u>Subtracted</u> from Measured Values due to Reflecting Surfaces

Distance microphone or source is from reflecting surface ² Meters(feet)	Correction dB
31 (100)	0.5
15 (50)	1
8 (25)	2
4 (12)	3
2 (6)	4
1 (3)	5
0.3 (1)	6

aThe reflecting surface should be larger than 6 m x 6 m x 3 m (20 ft x 20 ft x 10 ft)

t The second second

and the second

Т

The correction is found at the intersection of this line and the central axis. Subtract this correction from the measured values.

Example: Automobile noise levels are measured at a location along a thoroughfare. Apartment houses are on one side of the road while large warehouses are on the other. The microphone is located 15 meters from the nearest lane of traffic but is only 5 meters from the walls of the apartment building. This lane of traffic is 35 meters from the warehouses on the other side of the roadway. The automobile noise is measured at an A-weighted sound level of 85 dB. What is the corrected value of automobile noise?

> The distances D and L for the nomograph, Figure 2.5, are 20 meters and 5 meters, respectively. A line between these points passes through the correction value of 2 dB which must be subtracted from the measured value (see Figure 2.5). Thus, the corrected sound level for the automobile is 85 - 2 = 83 dB.

فالحميد فيرجون وأبدا وترك أنكاب ورابا المحاص مورجون وأستجم متع

30.

2.4 BIBLIOGRAPHY

DEOT DOBY AUAN

517

Publications in Acoustics

Acoustics, Leo Beranek, McGraw Hill, 1954.

Noise and Vibration Control, ed. Leo Beranek, McGraw Hill, 1971.

Noise Reduction, ed. Leo Beranek, McGraw Hill, 1960.

Fundamental Acoustics, L.E. Kinsler, A.R. Frey, John Wiley and Sons, 1962.

Noise and Noise Control, M.J. Crocker and A.J. Price, CRC Press, 1975.

Handbook of Noise Control, ed. Cyril M. Harris, McGraw Hill, 1957.

Handbook of Noise Measurement, A. Peterson and E.E. Gross, General Radio, 1972.

The Effects of Noise on Man, Karl D. Kryter, Academic Press, 1970.

Noise, the New Menace, Lucy Kavaler, John Day Company, 1975.

"Community Noise," USEPA NTID 330.3, Jecember 1971.

"Noise from Construction Equipment and Operations, Building Equipment and Home Appliances," USEPA NTID 300.1, December 1971.

"Impact Characterization of Noise Including Implications of Identifying and Achieving Levels of Cumulative Noise Exposure," USEPA NTID 73.4, July 1973.

"Information on Levels of Environmental Noise Requisite to Protect Public Health and Welfare with an Adequate Margin of Safety," USEPA 550/9-74-004, March 1974.

"Effects of Noise on People," USEPA NTID 300.7, December 1971.

"Noise and Man," Handbook of Acoustic Noise Control Vol. 2, WADC TR-52-204, Wright Paterson Air Force Base, Ohio, Wright Air Development Center, 1953.

"Noise Emission Standards for Construction Equipment: Background Document for Portable Air Compressors," USEPA 550/9-76-004, December 1975.

a series and a series of the
warman and a star of a second of the second of the second second second second second second second second seco

"Handbook of Noise Ratings," Karl S. Pearsons, et al, NTIS Report N74-23275, April 1974.

"Experimental Study of the Propagation of Sound Over Ground," Francis M. Wiener and David N. Keast, JASA Vol. 31, Number 6, 1959.

"Predicting Community Response to Blast Noise," CERL Technical Report E-17, December 1973.

Standards

American National Standards Institute

S1.1-1960 (R1971	Acoustical Terminology
Sl.4-1971	Sound Level Meters, Specifications for
Sl.6-1967 (R1971)	Preferred Frequencies and Band Numbers for Acoustical Measurements
S1.8-1969 (R1974)	Preferred Reference Quantities for Acoustical Levels
S1.10-1966 (R1971)	Calibration of Microphones, Method for the
S1.11-1966 (R1971)	Octave, Half-Octave, and Third-Octave Band Filter Sets, Specifications for
S1.12-1967 (R1972)	Laboratory Standard Microphones, Specifi-
51.13-1971	Sound Pressure Levels, Methods for the Measurement of
53.20-1973 [.] 53-W-39	Psychoacoustical Terminology The Effects of Shock and Vibration on Man

International Standards Organization (ISO)

R31 - Part VII-1965	Quantities and Units of Acoustics			
R266-1962	Preferred Frequencies for Acoustical			
	Measurements			
R-1996-1971	Acoustics - Assessment of Noise with			
	Respect to Community Response			
ISO 2204-1973	Acoustics - Guide to the Measurement of			
	Airborne Acoustical Noise and Evalua-			
	tion of Its Effects on Man			
ISO 2631-1974	Guide for the Evaluation of Human Expo-			
	sure to whole-body Vibration			

International Electrotechnical Commission (IEC)

IEC 123	(1961)	Sound Level Meters, Recommendations for
IEC 179	(1965, 73)	Precision Sound Level Meters
IEC 225	(1966)	Octave, Half-Octave, and Third-Octave
		Band Filters Intended for the Analysis
		of Sounds and Vibrations

National Bureau of Standards

NBS 386

-. -

· · · · -

Standards on Noise Measurements, Rating Schemes and Definitions: A Compilation

where the second s

32 ·

2.5 REFERENCES

. . ..

. .

3

한법

يتديد للمتنطق والمروح

- 1. American National Standards Institute S1.6-1967 (R1971) "Preferred Frequencies and Band Numbers for Acoustical Measurements."
- Werner, F. M. and D. N. Keast, "Experimental Study of the Propagation of Sound over Ground," JASA Vol. 31, Number 6, 1959.
- "Chicago Urban Noise Study," Bolt Beranek and Newman Report No. 1411, Nov. 1970.
- 4. State of Oregon "Motor Vehicle Sound Measurement Procedures Manual," NPC S-21.

- -

.

33

and the second of the second s

3.0 INSTRUMENTATION

3.1 INTRODUCTION

Noise measuring instruments and support equipment such as wind speed indicators, hygrometers, tachometers, and watches are used in the noise measurement methods presented in this Code of Current Practices. In the following sections, the theory and techniques for each instrument are discussed. 3.2 SOUND LEVEL METERS

The basic components of a sound level meter are the microphone, an amplifier, a filter, a detector, and a read-out device. These components are shown schematically in Figure 3.1.

The <u>microphone</u> is a transducer which converts timevarying sound pressure to a time-varying electrical signal. The voltage of this signal is very low and needs to be increased. This is accomplished by the <u>amplifier</u>. Most sound level meters contain an electronic circuit which varies the voltage of the signal in a desired manner. Normally, this circuit, called a <u>filter</u>, varies the signal voltage as a function of frequency. The A-weighting network (filter) discussed in Section 2.3.2 reduces the voltage a great deal in the low frequencies in an attempt at simulating the human ear's effect on sound as one hears it. At the outlet of the filter, the signal is still time-varying. But in order to provide a read-out in decibels, the signal must be <u>detected</u>. That is, the square root of the mean (average) of the square

and the second
and the second

ロビクイ フノフィ トレトニ・フ・ト

of this signal (rms) is determined by another electronic circuit. In this section of the sound level meter, the logarithm of the rms voltage is also obtained. The <u>detector</u>, in effect, changes the signals' characteristics from alternating current (A.C.) to direct current (D.C.). The <u>read-out</u> is usually a voltmeter with a needle movement which displays the voltage output of the detector on a scale in decibels.

•Microphone

There are a number of different types of microphones in use. The most common are the ceramic (piezoelectric), the condenser, and the electret microphones. Some electrodynamic microphones are available but they are less common.

The ceramic microphone consists of a diaphragm which is fastened to a piezoelectric crystal. Sound pressure is converted into a force. which bends the crystal. When a piezoelectric crystal is strained, it produces a voltage. The condenser microphone also uses a diaphragm to produce motion. This motion changes the electrical capacitance formed between the thin diaphragm and a back plate. When a high D.C. polarizing voltage is applied to the capacitor, a time-varying voltage, proportional to the acoustic pressure, is produced. The electret microphone works on the condenser principle. A suitable plastic coating applied to the thin diaphragm maintains its own polarization (D.C. voltage). The capacitance change caused by motion of the diaphragm produces a voltage.

The voltage produced by the microphone may not be linearly related to the sound pressure due to the microphone geometry and construction. The sensitivity of common microphones decreases at very low frequency (less than 20 Hz), is flat (linear) for frequencies between 50 Hz and 8000 Hz, and increases above 8000 Hz. The frequency characteristics of a one-half inch condenser microphone are shown in Figure 3.2. Two frequency characteristics are shown. Note that the microphone response is more linear for sounds reaching it from all directions than from a sound reaching it along its axis. <u>It</u> is important, therefore, to follow all microphone manufacturer (or sound level meter manufacturer) instructions for the orientation of their microphones for the most accurate results.

• Amplifier

The amplifier used in a sound level meter is similar to the amplifier used in a good HiFi system. Its purpose is to increase the output voltage and output power without distorting the signal. The frequency response for the sound level meter amplifier shall be flat from below 20 Hz to above 20,000 Hz.

The amplifier must increase the output voltage in steps. Ten decibel steps are most often used.

•Filter

DECT PONV AVAN

ì

Weighting networks are a type of filter provided with the sound level meter to present a measure of how sound is perceived by an individual. In community noise measurements, the A-weighting network gives good correlation

FIGURE 3.2 FREQUENCY CHARACTERISTICS OF ONE HALF INCH CONDENSER MICROPHONE

ີ. ເມື່

A.C.S.

with human perception. Some sound level meters are also equipped with B-, C-, and flat-designated weighting networks. Differences between the sound pressure levels measured with the C or flat weightings and the A-weighting provide a good approximation of the ratio of high to low frequency distribution of a noise. The ideal A-, B-, and C-weighting network response curves, as specified by ANSI S1.4-1971, are shown in Figure 2.2.

i.

A frequency analyzer is basically an electronic filter which selectively passes only those frequencies for which it is tuned. In this way, the level read on the meter is related to the energy content at the tuned frequency or contained in the band of frequencies passed. These analyzers may be an integral part of sound level meter systems, or they may be separate units that must be attached to separate read-out devices. In any case, instructions from the instrument manufacturer must be followed carefully.

The octave band analyzer uses the most common set of filters used for noise measurements today. Octave bands are the widest of the common band widths used for analysis and thus provide spectral information of sound pressure requiring a minimum number of measurements.

An octave band is defined as having an upper bandedge frequency equal to twice the lower band-edge frequency. The center frequency of an octave band is found from the square root of the product of the upper and lower band-edge frequencies. However, rather than specifying the upper and lower band-edge

frequencies, national and international standards on octave band analyzers have specified the center frequencies and from these the upper and lower band-edges. The standardized octave band center frequencies are 31.5, 63, 125, 250, 500, 1000, 2000, 4000, 8000, and 16000 Hz. Octave denotes a doubling. Note that not only are the band widths of each octave band one octave wide, but also the interval between center frequencies is one octave. Figure 3.3 shows the general octave band shape of a band pass filter with a center frequency of 1000 Hz.¹ Octave bands increase in width with increasing frequency, thereby permitting more sound energy to be transmitted in the upper bands than in the lower. For example, at 100 Hz, the band width is 70.7 Hz wide, while at 1000 Hz, it is 707 Hz and at 10,000 Hz it is 7070 Hz wide.

•Detector

ココフォ ンシス・

Т

The electrical signal from the microphone is typically comprised of the sum of many components at different frequencies. The square root of the mean of the square of the signal (rms) is required prior to obtaining and displaying the logarithm of this value in decibels. Common detectors rectify the signal (convert from a.c. to d.c.) and average it using a resistance/capacitance (RC) circuit. Two averaging circuits are provided; a "FAST" response circuit and a "SLOW" response circuit. At the "FAST" setting, the meter needle indicates the true indication of the level within 200 to 250 milliseconds after a 1000 Hz tone is applied. The overshoot

40 ·

and needed the second second second of the second of the second second second second second second second second

i

ç. ••

 $(a, b, a, b, a) \notin (a, a)$

^{**}Bandwidth is specifie in terms of the half power point (3 dB).

.

(amount the needle rises above the correct reading) before that time is not greater than 1 decibel. The "SLOW" setting averages the sound level for a longer period with little overshoot. For a rapidly fluctuating sound signal, the "SLOW" setting may not have a fast enough response to measure the signal.

Read Out Device

The sound level meter output can be displayed on a graphic recorder or by a needle on a scale. The scale used with most sound level meters has a range of at least 15 decibels with increments of 1 decibel. Newer sound level meters have scales with a 20 decibel or greater range.

The meter range is adjusted (signal attenuated) so that the needle reads on-scale. Some meter scales have a display indicating -5 to 0 to +10. A 0 dB indication represents the setting of the amplifer, say 60 dB. A +7 indication would be read as 67 dB. A -3 indication would be read as 57 dB. 3.3 <u>COMMUNITY NOISE ANALYZERS (AMPLITUDE DISTRIBUTION</u>

ANALYZERS)

and a start of the second start

à

Unless a sound signal (or vibration signal) is at a constant level, a problem exists in how to describe the fluctuating signal. Amplitude distribution analyzers (also called statistical distribution analyzers) measure ambient sound over long periods of time. These units contain a series of counters each of which corresponds to a unique (or small range) sound level. The analyzer can display the number of times a particular sound level occurred during the measurement period (histogram) or the percentage of time a sound level was exceeded during the measurement period (cumulative distribution). A number of these analyzers will calculate from the acquired data, the equivalent sound level, L_{eq}, and the day/night sound level, L_{dn}. Certain models are equipped with batteries, microphones, and special enclosures which allow the unit to operate unattended even under adverse weather conditions. An option is available which includes an anemometer. If wind speeds exceed a preselected level, the sound data acquired during this occurrence is disregarded.

3.4 WINDSCREEN

The movement of air around a microphone causes turbulence which in turn generates undesired noise at the diaphragm of the microphone. This noise can effectively mask the sound signal under study even though it may be inaudible to the human ear. In cases where measurements must be made in the presence of wind or where wind gusts are suspect during the course of measurement, a microphone windscreen should always be employed.

Windscreens are generally either spherical or cylindrical in shape, made of foamed polyvinyl, open-celled polyurethane, or a silk-covered grid. The windscreen is attached directly over the microphone. They are limited in their effectiveness; therefore, measurements should not be made when the wind speed exceeds 20 km/hr (12 mph).

The windscreen has the secondary advantage of protecting the expensive microphone from damage due to inadvertent blows or falls.

43

والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمتح

3.5 ACOUSTIC CALIBRATOR

The acoustic calibrator provides a means for conducting an overall system check and calibration of the sound level meter. Calibrators are generally compact and rugged so that they may be used effectively in the field. They consist basically of a sound source generated in a small cavity using battery-driven electronic circuitry. Some calibrators generate a single frequency at a stated sound pressure level, while others are tunable to several preselected pure tones, all at a known sound pressure level.

Calibrators are specifically designed for various microphones so it is important that the proper calibrators be used. Otherwise, errors may result or microphones may be permanently damaged.

The sound level meter reading is adjusted to match the calibrator sound pressure level. For calibrators which emit sound at 1000 fiz, the calibration can be accomplished using any weighting network. Otherwise, sound level meters must be calibrated using the flat or C-weighting scale.

Calibrator output is affected by changes in atmospharic (barometric) pressure. Care must be taken when using the calibrator at atmospheric pressures other than standard conditions. Calibrator manufacturers provide correction curves for calibrator use at atmospheric conditions other than standard. Calibrators must be checked on a routine basis to ensure the level of sound emitted has not changed.

The following photograph shows calibration of a sound level meter.

44

חצכד הטסע איזאוו

22.7

. . . .

3.6 ANEMOMETER

Wind noise can cause variations in microphone sound level measurements. To ensure that conditions are acceptable for sound measurements, however, it is important to be able to measure wind speed. An anemometer is used for this purpose.

Anemometers are typically of one of two types, <u>pressure tube</u> or <u>rotation</u>. The pressure tube type is based on the principle that wind blowing across the mouth of a tube produces a vacuum, while wind blowing into the mouth of a tube produces a pressure, both proportional to the wind speed. A rotation anemometer uses a set of open cups or an aerovane to produce rotation (similar to a windmill). This rotation drives a small generator which produces a voltage proportional to the wind speed.

3.7 TACHOMETER.

コンシー シンフィ

1.1

A tachometer is used to measure rotational speed of an engine. Tachometers are of three major types. <u>Electrical</u> <u>tachometers</u> use a signal from the vehicle's ignition system to indicate engine speed. An induction tachometer requires that a sensor be clipped onto a spark plug wire. Since the relationship between engine firing rate and rotational speed varies with the number of engine cylinders, multiple scales or conversion tables are required for correct determination of rotational speed. Some engines used on motorcycles and recreation

> ∴.... 46

a tha an baile than a sine ann an tao ann an tao ann a' tha tao ann an tao an tao an tao an tao an tao an tao a

vehicles introduce complications. Two stroke engines are designed so that each cylinder fires every revolution (standard automobile engines fire once every second revolution). Some engines are designed for cylinder firing every revolution. Therefore, tachometer readings must be interpreted very carefully.

Since diesel engines have no spark ignition systems, some method other than an electrical tachometer must be employed to measure rotational speed. An <u>electromechanical</u> <u>tachometer</u> is directly connected to the engine drive shaft to obtain the motion for a generator which produces a voltage proportional to rotational speed.

Optical tachometers may also be used. These units utilize a light beam reflecting from a mark on the drive shaft or fan. The light is pulsed at a high rate until synchronism occurs (stroboscopic effect) and the mark (or fan) apparently stops rotating. The engine speed is then read from a calibrated dial.

3.8 REFERENCES

•

علی مشال و بر از با مندو از مشال و بر مراز با از با حرک مال می 1. American National Standards Institute S1.8-1966 (R1971) "Specifications for Octave, Half-Octave, and Third-Octave Filter Sets."

47

• ·

4.0 VIBRATION

4.1 INTRODUCTION

ł

Biological effects of structure-borne vibration upon exposed humans depend upon many complicated interrelated factors.⁽²⁾ These include the amplitude and frequency of the vibration, its locational site, area, direction of application, and individual variations in susceptibility as are dependent upon physical state, age, muscle tone, size and weight, etc. The kinds of effects depend largely upon the vibration frequency which may range from 0.1 to 1,000,000 Hz. Adverse effects may range from motion sickness (kinetosis) which occurs principally for vibration between 0.1 and 10 Hz to local tissues heating and possible cell damage at frequencies in the ultrasonic range above 20,000 Hz.

Vibration is an oscillatory motion of gas particles (sound), fluids, or solids. Vibration is most commonly used to describe wave motion of solids. Vibration of a solid structure at a point can be described by many parameters, including displacement, velocity, and acceleration. These quantities can be determined by different instruments, but acceleration is easiest to measure using accelerometers.

Acceleration, velocity, and displacement are interrelated. Acceleration is the time rate of change of velocity, and velocity is the time rate of change of displacement. Therefore, by obtaining the acceleration as a function of time at a point, all the other parameters can be determined.

48

4.2 VIBRATION CRITERIA

Basic threshold acceleration values for acceptable vibration environments have been proposed by the Committee on Hearing, Bioacoustics and Biomechanics based on present and proposed International Standards Organization (ISO) standards.^(1,2) Table 4.1 contains these proposed values as a function of building types or spaces depending upon the time of day and whether the vibration is impulsive or not. The acceleration values shown in the table should cause less than 1 percent of the population to complain.

Acceleration levels higher than those shown in Table 4.1 for hospital operating areas should not be allowed without careful study and analysis. For residential and similar areas, higher continuous acceleration than the values shown in the table may be allowed for shorter times without causing complaints. Note that allowable values for office spaces are twice that of residential areas, while values for factory areas are four times that of residential areas.

Very high acceleration levels, particularly from blasting or high airborne noise (sonic boom) may cause structural damage. A structural vibration (velocity) limit of 0.05 m/sec (acceleration of 1 m/sec² for 3 Hz) is suggested as a safe limit to prevent structural damage. For historical sites or structures of particularly high value, an acceleration of 0.05 m/sec² is suggested as a safe upper limit.

Table 4.1

Basic Threshold Acceleration Values for Acceptable Vibration Environments Daytime is 7 am to 10 pm. Nighttime is 10 pm to 7 am. All Values are Meters/Sec²

Type of place	Time of day	Continuous or intermittent rms acceleration	Impulsive shock excitation peak acceleration
Hospital Operating Rooms and Other Such Critical Areas	Day Night	.0036 .0036	.005
Residential	Day	<u>.072</u> v <u>r</u>	$\frac{1}{\sqrt{N}}$
Offica	Anytime	$\frac{.14}{\sqrt{t}}$	$\frac{.2}{\sqrt{N}}$
Factory and Workshop	Anytime	. <u>28</u> √E	. <u>.4</u> /R

t = duration seconds of vibration; for durations greater than 100 sec, use t as 100 sec.

N = the number of discrete shock excitations that are one sec or less in duration. For more than 100 excitations, use N=100.

Note: $1 g = 9.3 \text{ m/sec}^2$

1.12

a statistical a

50

4.3 ACCELEROMETER AND VIBRATION METER

Accelerometers, a common form of vibration pickup or transducer, are most often constructed using a piezoelectric body to produce an electrical signal proportional to acceleration. Figure 4.1 is a sketch of the construction of a typical accelerometer. A mass is attached to the piezoelectric crystal in a housing. The mass produces a force on the crystal when it is accelerated. The piezoelectric crystal has the property of producing a low voltage when it is strained (squeezed). Small, light weight accelerometers produce a voltage that ranges from 1 to 5 millivolts per "g" (9.806 m/sec) of acceleration.

Since accelerometers are small and light, they are easily attached to most structures. Accelerometers may be attached using a threaded hole and stud, epoxy glue, or simply by holding it firmly. A light grease is often used with the latter method to ensure a good interface. Manufacturer instructions for mounting should be reviewed. Most accelerometers can be oriented to any direction.

Vibration meters provide a means for displaying the vibration level in decibels or the rms value in English or metric units. The vibration meter is constructed in a similar manner to a sound level meter. The low voltage output of the accelerometer is amplified, detected, and displayed. The detector provides a signal proportional to the rms acceleration which can be directly displayed or converted to acceleration level in decibels, depending upon the meter. Many sound level meters can be used, with suitable calibration, as the indicating instrument for the accelerometer.

51

جيرين والبرين بينيه والاستانيس

....

キャック アクロ・ログ しておい りいけ

.

52

.

4.4 REFERENCES

.

.

. .

ł

 "Guidelines for Preparing Environmental Impact Statements on Noise," Committee on Hearing, Bioacoustics and Biomechanics, National Research Council, 1977.

. . .

-

. •

• ... •

2. "Vibration Criteria for Occupants in Buildings," (1976 Draft Addendum to ISO Standard 2631-1974.

53

. . .

PRACTICAL SUGGESTIONS FOR USERS OF THESE PRACTICES

USE OF THE SOUND LEVEL METER

- Some microphones are directional. Orient the microphone for the best frequency response. Consult the sound level meter user's manual for the proper orientation.
- Reflecting and absorptive surfaces (for example, the human body) affect accuracy. The meter reader and others should be as far from the microphone as possible. Use an extension cable supplied by the instrument manufacturer.
- 3. If the microphone cannot be separated from the meter, the observer should orient himself so as not to be behind the microphone. Stand to the side of a straight line from the microphone to the source as the sound level meter is being read.
- 4. Calibrate the sound level meter as often as possible. The instrument should be calibrated with all equipment and cables connected. This does not include the windscreen. If calibrations before and after differ, repeat the measurements if possible. For measurements which cannot be repeated, use a lower measurement value as determined from the calibrations. For example, if the pre-test calibration is 114 dB and the post-test calibration is 112 dB, reduce the measured value by 2 decibels. Reject the data if calibration difference exceeds 3 decibels.
- 5. When moving the sound level meter from one extreme temperature environment to another (e.g., from a heated car to the outside), care should be taken so that moisture does not form on the microphone diaphragm.

SELECTING MEASUREMENT SITES

- Not all sites will have all the features suggested in the practices. Judgment as to the use of a particular site must be made after a site visit.
- Small objects such as mailboxes, fence railing, and utility poles will not affect the data if these objects are not very close to the microphone or the source of noise.
- 3. The area around the measurement site may have shallow slopes.
- 4. If the site does not meet the necessary requirements but must be used, carefully note the type, amount,

الأحسان الذي المراجع . - المراجع المراج and location of reflecting surfaces, and other problems. Estimate the error that these site problems might cause. Consider this error in assessing compliance.

5. Stationary/source noise measurements should be made at the point of maximum sound level on the receiving property. This location (of max sound level) may, or may not, be at the nearest property line, or vertical extension of that property line (i.e., high rise building).

BACKGROUND AMBIENT SOUND LEVELS

0101

1. Measurements of noise sources should be made when the background ambient sound level is more than 10 decibels less than the sound level of the noise source being measured. This is often not possible to achieve. In this case, use the following table to subtract the background ambient data from the measured data to obtain the noise source <u>contribution</u>. If the background ambient sound level is within 3 decibels of the noise being measured, no assessment of the noise source <u>contribution</u> can be made.

> ΔL_A^a (dB) \leq Correction^b (dB) 0 1 * 2 * 3 3.0 4 2.5 5 2.0 6 1.5 7 1.0 8 1.0 9 0.5 10 0.5 $\Delta L_{\rm A}$ - the difference between the measured sound level with the noise source operating and the background ambient.

^b Correction - the value to be <u>subtracted</u> from the measured sound level to determine the source sound level contribution.

2. For passby measurements, note the difference between the maximum sound level as the vehicle passes by and

the background ambient sound level after the vehicle has passed. Note both values and make adjustments as in 1, above.

3. Decreasing the distance to the noise source often decreases the effect of the background ambient sound levels. Afterwards, adjust the measured sound level for distance as discussed in Section 2.3.6.

ENFORCEMENT

2124 2221

;

.

- The presence of a law enforcement officer for roadside measurements and citation is suggested. Measurements can be made from inside a stationary enforcement vehicle if the microphone is positioned outside the vehicle in such a way as to minimize environmental effects (such as reflections, absorption, etc.). The enforcement vehicle must be stationary with its engine off during the tests.
- 2. Be certain that all portions of the data sheet are completed.

. .----

المراجع والمحمد والمحمد والمراجع والمحمد المحمد المحمد ومحمد ومحمد والمحمد والمحمد والمحمد والمحمد والمحمد

5.0 STATIONARY NOISE SOURCES

5.1 INTRODUCTION

מבפד הטפע אוואיי

A <u>stationary</u> noise source is a general term used to describe a source or activity which operates within defined boundaries, property lines, or zones. The source includes all machinery, vehicles, or other devices, whether fixed or in motion, which are associated with the normal activity of the land use as long as the source remains within the recognized boundaries. Examples of stationary sound sources include air conditioners, fans, industrial plants, construction sites, truck loading and unloading, and maintenance yards.

Two methods are described for the measurement of nonimpulsive sounds emitted from a stationary noise source. One method provides the equivalent sound levels (L_{eq}) or statistical levels for the stationary source, while the second method provides only the maximum (or steady) sound levels. The L_{eq} for a stationary source can be obtained from manual sampling or from sophisticated, automatic noise analyzers.

Equipment is available for measuring community ambient sound levels for long periods (see Section 3.3). This quiet, sophisticated equipment is more expensive than simple sound level meters. These units will, with some variation, acquire, calculate, and display sound level data (e.g., equivalent sound level $[L_{eq}]$, the day/night sound level $[L_{dn}]$ and other statistical sound levels, such as the L_{10} , etc.). These

units incorporate minicomputers or microprocessors which digitize sound level measurements, perform simple statistical algorithms and store the results in a memory for later retrieval. In some cases, the digitized sound level data are stored on a magnetic tape cassette for later analysis using a companion instrument. Using these instruments is simply a matter of positioning the microphone at the proper location and then following manufacturer's instructions. Handheld L_{eq} -meters are now becoming available and are relatively inexpensive.

When this equipment is not available, the procedure described in Section 5.2 may be used. It only requires an inexpensive Type 2 sound level meter.

A procedure which provides sound pressure level spectra is described since many communities in their noise ordinances incorporated octave band sound pressure levels (see Section 2.3.1) in lieu of or in addition to A-weighted sound levels.

Impulsive sound levels can be obtained in a manner similar to obtaining maximum sound levels if special equipment (an impulse sound level meter) is used. A procedure to obtain a stationary noise source's impulsive sound level is provided for situations where it is required.

Finally, a procedure to obtain vibration levels is discussed. Vibration magnitude can be measured in terms of displacement, velocity, acceleration, or jerk. Many instruments can measure all of these quantities. Acceleration and displacement are the most typically measured and reported quantities.

5.2 STATIONARY NOISE SOURCE - EQUIVALENT SOUND LEVELS, Leg

5.2.1 PURPOSE

The purpose of this procedure is to provide a useful method to measure the noise emitted from stationary sources including <u>industrial</u> plants, <u>commercial</u> operations, and <u>construction</u> activities. Communities without the funds to purchase statistical distribution analyzers can evaluate statistical sound levels and L_{eq} using a sound level meter and the procedure described below. Measurements are made at locations in accordance with noise control ordinance specifications. If a location is not specified in the ordinance, measurements are made at the property line nearest to the source, or at a point beyond the property line where source sound levels are highest.

5.2.1 EQUIPMENT

The stationary source sound level measurement procedure outlined below requires a sound level meter meeting, as a minimum, ANSI S1.4-1971 specifications for Type 2 sound level meters, an appropriate sound level meter calibrator accurate to ±.5 decibel, an earphone or headphones compatible with the sound level meter and an anemometer (wind speed indicator) accurate to ±10%.

In addition, a windscreen recommended by the microphone manufacturer shall be employed during measurements. Use of a windscreen reduces the influence of wind induced noise at the microphone.

The sound level measurement system shall be checked annually by its manufacturer or a certified laboratory for accuracy.

5.2.3 MEASUREMENT LOCATION

Measurements are made at locations specified in the appropriate nose control ordinance. If a location is not specified in the ordinance, measurements shall be made at the nearest property line of the receiving land use. If measurements are performed in response to a specific complaint, measurements shall be made at the complainant's property. If the measurements are not being made in response to complaints, they shall be made at the property boundaries of the nearest receiving land use.

5.2.4 PERSONNEL

ビコンチ

Persons technically trained and experienced in the current techniques of sound measurements should select the equipment and conduct the tests. The individual should be familiar with the manufacturer's instructions for the proper use of the equipment.

5.2.5 MEASUREMENT PROCEDURES

Mount the microphone (or sound level meter/microphone combination if the microphone cannot be remotely mounted) on a tripod at a height of 1.2 meters (4 ft.) ± 8 cm (± 3 in.) above the ground, and if practical, at least 3 meters (9.8 ft.) from any substantial reflecting surface. The location shall be chosen so that noise sources, other than that being measured, have minimum influence on measurements. A line of sight between the measurement location and the noise source should not be interrupted by any substantial object such as a building, dense trees or barrier (if possible).

and a second Set the meter to "fast" response and A-weighting. Record the time the sample will start. During the sample period, at the end of every 15-second interval, record the instantaneous meter reading on the lower part of the data log (Figure 1).

At the end of each 20-minute sampling period, count the occurrences for each 2 dB-wide noise level band and write the number in the column on the right under "Total." Record the concluding time of the sample in the upper left-hand corner of the data sheet.

The L_{eq} value for the sampling period is calculated using the Computational Work Sheet shown in Figure 2. Enter the number of counts per noise level in Column B. Multiply the counts in Column B by the number in Column C and enter the results in Column D. Add all values in Column B to determine Sum B, add all values in Column D to determine Sum D, and divide Sum D by Sum B. Locate the value in Column C that is approximately equal to Sum D/Sum B. The corresponding value in Column A is equal to L_{eq} .

To determine the L_{10} , count down from the top of the data sheet (Figure 1) until 10 percent of the total count has been reached. Interpolate (linearly) as necessary to provide an estimate of L_{10} . Other statistical levels are determined similarly.

Measurements shall not be made when the wind speed exceeds 20 km/hr (12 mph), or when it is raining or snowing.

Measurements shall not be made during environmental conditions (temperature, humidity) which the instrument manufacturer deems unacceptable.

The sound level meter shall be calibrated immediately before and after each measurement period. If the two calibrations differ by more than 1 decibel, the measurement shall be repeated.

If, during any of the observations, the measurements are affected by any intrusive noise sources outside the noise source boundaries, such as aircraft, emergency signals, and surface transportation, measurements made during these periods shall not be considered, but the number of observation periods shall be extended until 80 valid measurements are obtained. Vehicles, such as tractor trailer trucks, dump trucks, truckmixers, etc., which occasionally enter, operate on, and leave the site, shall be considered as part of the stationary source noise activity while within the site boundaries. However, _________ passby of such vehicles, in the area of the measurement location causing difficulty in obtaining valid measurements, shall be considered as intrusions, and handled as in the preceding paragraph.

If possible, measurements shall be made without the sound source operating to determine background (ambient) sound levels. In doing so, the same procedure shall be used. The background (ambient) equivalent sound level shall be at least 10 decibels below the source equivalent sound level. If the background (ambient) equivalent sound levels are from 3 to 10

1000

ロビウイ ンンフレ

A1141

62

decibels below the source equivalent sound levels, then corrections to the source sound levels are applied in accordance with Table 1. If the background (ambient) equivalent sound level is less than 3 decibels below the source equivalent sound level, then the contribution of the source equivalent sound level to the overall sound level is less than or equal to the background (ambient) equivalent sound level. Therefore, no determination of the source contribution can be made.

63

المتأسور التربيب والمربين وكالمساوك مسافعه والرما والمحاج

- 7

REST CODY AVAILADI E

۸	Ŭ.	6	0]			1
1 Julia					Į			i
tevel Navi ite	Count	Relative Hala Kneav	Relative Total Mata Energy		DATANC	JUINEMENTS	Si	ł
							···	4
400	······································				•	Baci Inte	ch pulse seculiny east be taken as a standaid stee areal between electroscents	
95	·	<u></u>	· · · · · · · · · · · · · · · · · · ·		}			- 1
¥4	·	20,000 #				£1	to sectory the contract that the the tendence of the sector	
90		17,200			•	6463	W Unite least rectines in 1114 meridiumetis rease	· [
lii)					5168	. 80) CEDIWE	
84		j 140						1
81		2,000			1	Ente	er number of counts per polis level be Cakiner D.	
b()	<u>4</u>	791			2	Mil	lifely the counts in Column 6 by the number in	
24		<u>jui</u>				Cula	lann C and other the result in Cohann D.	
7.1		116			1		tall such as the Colour B to determine Sec. B. and	
72	<u>K</u>	124				all v	values in Caluma & to determine Sum D and divide	de l
All		79.4				\$wa	D by Sum B.	
25				'	4	Lucu	ate the value in Cohem C that is untractantely	1
44	O	20,0 4				4 cp. c	at Sun D/Sun B. the corresponding velos in	1
60		12.4		-	••••	Cálu	unus A in argund to L Interpolate in the nearest	1
54						0.3 (da	
56	ss	3.76 -			FXALIFI	f	thing Stars Librards & alway	
52	4	2.00		~	a revenue to			
50					Given ile	a tallawing		
40		.501 -		_	Enni dal	a, 1903 L. Aq.	A2 # 2,000 = 4,00)	
	<u>H</u>				tiolia	Nunber of	б <u>АО — 6 н 1,240 ч 0</u>	
42	<u> </u>	122		- 1	Loval	Occuration		- 1
39	<u>x</u>	.0/94 -			• #4			
34	····			~~ 1	NO		72	
31		.0200 =		(78			
30	<u>#</u>	.0124 -	·····		74			1
······································			······		72	=		
Sum B +		Sum D .	1			:'	•	Í
Sum D/Sum A +		· · · · · · · · · · · · · · · · · · ·					- los llasat laterosiation la	
		* 4 -			Į.	\$	Column C and Column A.	1
	······						······································	
			•		4	· , ,.	· · · · · · · · · · · · · · · · · · ·	•
			1	,	ļ.			
			Fluire 2. Com	nutet	fonalth	ork 41.a	ar .	
		1	Bure er ubig	ender L		ara allei	• • • • •	
						i		
			1.		•			
			19 jî	E.				
					11			

ļ

TABLE 1

5.3 STATICNARY NOISE SOURCE - MALIMUM SOUND LEVELS

5.3.1 PURPOSE

The purpose of this procedure is to provide a method to measure the maximum λ -weighted sound Level, L_{λ} , and the sound pressure Levels in each frequency actave band emitted by stationary noise sources.

5.3.2 20UIPMENT

The procedure requires a sound level meter meeting, as a minimum, ANST SLA-1971 specifications for Type 2 sound level meters and a compatible octave band analyter. In some instances, the octave band analyter may be attached to the sound level meter, while in other cases it is a separate accessory. The octave band analyter must moot, as a minimum, ANST SLA1-1971 (R-1966) Specifications for Class II filter sets. A sound level calibrator accurate to 2.5 decibel, an earphone or headphones compatible with the sound level meter, and an anememeter (wind speed indicator) accurate to 210% at 20 km/hr are also required. A windscreen recommended by the microphone manufacturer shall be employed at all times. Use of a windscreen reduces the infiduence of wind induced noise at the microphone.

The sound lavel measurement system shall be checked annually by its manufacturer or a certified laboratory for accuracy.

5.3.3 MEASUREMENT LOCATIONS

Measurements shall be made at the nearest property line of the receiving land use. If measurements are performed

65 B

Character as the second se

in response to a specific complaint, measurements shall be made at the complainant's property. If the measurements are not being made in response to complaints, they shall be made at the property boundaries of the nearest receiving land use.

5.3.4 PERSONNEL

DECT PODV AVA

It is recommended that persons technically trained and experienced in the current techniques of sound measurements select the equipment and conduct the tests. The individual should be familiar with the manufacturer's instructions for the proper use of the equipment.

5.3.5 MEASUREMENT PROCEDURES

Mount the microphone (or sound level meter/microphone combination if the microphone cannot be remotely mounted) on a tripod at a height of 1.2 meters (4 ft.) ±8 cm (±3 in.) abovethe ground, and if practical, at least 3 meters (9.8 ft.) from any substantial reflecting surface. The location shall be chosen so that noise sources, other than that being measured, have minimum influence on measurements. A line of sight between the measurement location and the noise source shall not be interrupted by any substantial object such as people, buildings, dense trees, or barriers (if possible).

The noise measurement location, with site features and dimensions, shall be sketched on a survey data sheet (Figure 1) to provide a record which can be used if follow-up measurements are required.

66

A) A-Weighted Sound Level

Set the sound level meter on A-weighting mode "fast" response and record the maximum sound level observed during the measurement period. Figure 1 is a facsimile of a suggested data sheet.

B) Octave Band Sound Pressure Levels

Set the sound level meter on flat (linear or C-weighting) mode and "fast" response. Set the octave band filter to its lowest frequency setting (usually 31.5 Hz). Record the maximum sound pressure level observed during the measurement period (usually longer than two minutes). Figure 1 is a facsimile of a suggested data sheet. Set the octave band filter to the next higher octave band and repeat the measurement until the sound pressure level for each octave band is obtained. Due to microphone response characteristics at high frequencies, the highest desired frequency may be 8000 Hz.

If possible, the background ambient octave band sound pressure levels shall be 10 decibels below the source octave band sound pressure levels. Measurements shall be made without the source operating, if possible, to determine if these conditions exist.

Measurements shall not be made when the wind speed exceeds 20 km/hr (12 mph), or when it is raining or snowing.

Measurements shall not be made during environmental conditions (temperature, humidity) which the instrument manu-facturer deems unacceptable.

. 67

an management of the second
5.3 STATIONARY NOISE SOURCE - MAXIMUM SOUND LEVELS

5.3.1 PURPOSE

The purpose of this procedure is to provide a method to measure the maximum A-weighted sound level, L_A , and the sound pressure levels in each frequency octave band emitted by stationary noise sources.

5.3.2 EQUIPMENT

The procedure requires that a sound level meter meets, (as a minimum) ANSI S1.4-1971 specifications for Type 2 sound level meters and a compatible octave band analyzer. In some instances, the octave band analyzer may be attached to the sound level meter, while in other cases it is a separate accessory. As a minimum, the octave band analyzer must meet ANSI S1.11-1971 (R-1966) Specifications for Class II filter sets. A sound level calibrator accurate to ±15 decibel, an earphone or headphones compatible with the sound level meter, and an anemometer (wind speed indicator) accurate to ±10% at 20 km/hr are also required. A windscreen recommended by the microphone manufacturer should be employed at all times. Use of a windscreen reduces the influence of wind induced noise at the microphone.

The sound level measurement system should be checked annually for accuracy by its manufacturer or a certified laboratory.

5.3.3 MEASUREMENT LOCATIONS

DECT DODY AVAN

2

. Measurements shall be made at the nearest property line of the receiving land use. If measurements are performed

kan dia kanalah sisi sa kanjara sa kanalah kanalah sa kanalah sa kanala sa kala sa sa kanala kanala kanalah ka

in response to a specific complaint, measurements shall be made at the complainant's property. If the measurements are not being made in response to complaints, they shall be made at the property boundaries of the nearest receiving land use.

5.3.4 PERSONNEL

It is recommended that persons technically trained and experienced in the current techniques of sound measurements select the equipment and conduct the tests. The individual should be familiar with the manufacturer's instructions for the proper use of the equipment.

5.3.5 MEASUREMENT PROCEDURES

Mount the microphone (or sound lavel mater/microphone combination if the microphone cannot be remotely mounted) on a tripod at a height of 1.2 meters (4 ft.) 18 cm (13 in.) abovethe ground, and if practical, at least 3 meters (9.8 ft.) from any substantial reflecting surface. The location shall be chosen so that noise sources, other than that being measured, have minimum influence on measurements. A line of sight between the measurement location and the noise source shall not be interrupted by any substantial object such as people, buildings, dense trees; or barriers (if possible).

The noise measurement location, with site features and dimensions, shall be sketched on a survey data sheet (Figure 1) to provide a record which can be used if follow-up measurements are required.

A) A-Weighted Sound Level

See the sound level meter on A-weighting mode "fast" response and record the maximum sound level observed during the measurement period. Figure J is a facsimile of a suggested data sheet.

3) Octave Band Sound Pressure Levels

Set the sound level meter on flat (linear or C-weighting) mode and "fast" response. Set the octave band filter to its lowest frequency setting (usually 31.5 Hz). Record the maximum sound pressure level observed during the measurement period (usually longer than two minutes). Figure 1 is a factimile of a suggested data sheet. Set the octave band filter to the next higher octave band and repeat the measurement until the sound pressure level for each octave band is obtained. Due to microphone response characteristics at high frequencies, the highest desired frequency may be 3000 Hz.

If possible, the background ambient octave band sound pressure lavels shall be 10 decibels below the source octave band sound pressure lavels. Measurements shall be made without the source operating, if possible, to determine if these conditions exist.

Measurements shall not be made when the wind speed excaeds 20 km/hr (12 mph), or when it is raining or snowing.

Measurements shall not be made during environmental conditions (temperature, humidity) which the instrument manufacturar deems unacceptable.

70

במהי אטטר זייייו

The sound level metar shall be calibrated immediately before and after each measurement period. If the two calibrations differ by more than one decibel, the measurements shall be repeated after the sound measurement system has been adjusted.

2

manus a standard and a standard and a standard a standard a standard a standard a standard a standard a standar

The following photograph shows measurements being made at an industrial operation.

71

والمراجع المتعيين أحارين

والافترابية وتجعيش وواستا وترارك

المراجع المراجع

BLACK COPY

a states

Flöure 🙄

Examinar	1	. ·	·····		Da	£01		
Huntatpa Addreaus	Lity:			Taat Typei_		·····	······································	,
Notua So	urcei		······································	Adreau [
Typa of Complain	Recuiving Propa anti	rkyi Ranfd	ontial ()	Commerci Addreaus	al El	Industr	ial 🖸	
Sound La	val Hatar Hanuf) Typa Sartal #1		Calibrato 	r Hamifi Typai aria1 #i		_Htero, Bari	dann£s Types Lat #s	
Heter Ch Taut Con	ack Batt. C Gane dittons Copd	3 – Winducree Iral Wonther Ittiona	n () A-(lafghúing 🗋	ABaat R Aslow Xmi	eaponaa Wind	Calibration P	Pretoutd outtoutd
,						Sketch of	Stea	
Hef. DA4 10 ² a (jiiii) A-ue. (jiiii) 31:5	IK-+ IIII IIII IIII IIII IIII IIII IIII IIII IIIII IIIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1 00:AT 1 (3)18 		· · · · · · · · · · · · · · · · · · ·		•		

.

الميك ويصارفهما والسلالي بالمستنية المستنبة فالمستوقة ومضامعه والمعرور والمستعلمة المستعد المستعد والمستعد

5.4 STATIONARY NOISE SOURCE - IMPULSIVE SOUND LEVELS

5.4.1 PURPOSE

A method of measuring impulsive sound emissions of a stationary noise source is described. An impulsive sound is one characterized by brief increases in sound pressure which significantly exceed the background ambient sound pressures. The duration of any single impulse is typically less than one second.

5.4.2 EQUIPMENT

A Type 1 <u>Impulse</u> sound level meter meeting ANSI S1.4-1971 sound level meter specifications and IEC 179A impulse specifications shall be used for all impulse measurements. These meters have detectors which can measure signals with crest factors^{*} as high as 20 decibels. A meter with a peak-hold feature is suggested.

Other equipment required for this procedure include an appropriate sound level meter calibrator accurate to ±.5 decibel and an anemometer (wind speed indicator) accurate to ±10%.

In addition, a wirdscreen recommended by the microphone manufacturer shall be employed during measurements. This practice reduces the influence of wind induced noise at the microphone.

The sound level measurement system shall be checked annually by its manufacturer or a certified laboratory for accuracy.

*Crest factor is 20 log peak-pressure

シンフィ

الأفف والمحاج فالمروف المروكين المرود مهردون

and the second secon

5.4.3 MEASUREMENT LOCATIONS

Measurements shall be made at the nearest property line of the receiving land use. If measurements are made in response to a specific complaint, measurements shall be made at the complainant's property. If the measurements are not in response to complaints, they shall be made at the property boundaries of the nearest receiving land use.

5.4.4 PERSONNEL

Persons technically trained and experienced in the current techniques of sound measurements should select the equipment and conduct the tests. The individual should be familiar with the manufacturer's instructions for the proper use of the equipment.

5.4.5 MEASUREMENT PROCEDURES

Mount the microphone (or sound level meter/microphone <u>combination</u> if the microphone cannot be remotely mounted) on a <u>tripod</u> at a height of 1.2 meters (4 ft.) ±8 cm (±3 in.) above the ground, and if practical, at least 3 meters (9.8 ft.) from any substantial reflecting surface or noise source other than that being measured. A line of sight between the measurement location and the noise source should not be interrupted by any substantial object such as people, buildings, dense trees, or barriers (if possible). Measurements should be made at several locations at the receiving land use property line.

> The measurement location, with site features and dimensions, should be indicated on a survey data sheet (Figure 2). This procedure provides a record of the measurement locations for future reference.

> > المراجع . المراجع التي يتركز المراجع الم

The meter should be set for impulsive noise measurements and linear response. The range should be adjusted so as to provide on-scale indications of the impulsive sound levels.

Measurements should not be made when the wind speed exceeds 20 km/hr (12 mph), when it is raining, or snowing.

Measurements should not be made during environmental conditions (temperature, humidity) that the instrument manu-facturer deems unacceptable.

The sound level meter should be calibrated immediately before and after each measurement period. If the two calibrations differ by more than 1 decibel, the measurements should be repeated after the sound level meter is adjusted.

and a she was he was a state of the second state of the second state of the second state of the second second s

 $\sum_{i=1}^{n} i = i$

FIGUREN 2. ' EXAMPLE: NOISE MEASUREMENT REPORT FORM

Examiner:	Date:
Municipality; Address:	Test Type:
Nolse Source:	Address:
Type of Receiving Property; Complainant:	Residential Commercial C Industrial C Address:
Sound Level Meter Manuf:	Calibrator Manuf:Micro. Manuf:
Serial #:	Serial #: Serial #:
Meter Check Batt. [] Wind General Weath Test Conditions Conditions	dacreen () A-Weighting () (Past Response Calibration Pretest dB er () (Slow (Posttest)) Temperature (2000) (Mind Velocity)
1	Sketch of Site
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	I

المتحرفان والمراقب فالمحمود والمراد والمتحدث للمالة والمناطق المتكاف المساد والمتحم ومساحم والمستحد والمستحد

L.

5.5 VIBRATION

5.5.1 PURPOSE

The purpose of this procedure is to provide a method to measure vibration levels for comparison with perceptibility or impact standards.

5.5.2 EQUIPMENT

The equipment necessary for measuring vibration include a vibration transducer and vibration analyzer. The system is required to have sensitivity to accelerations as low as 0.001 g at frequencies between 1 and 10 Hz and as large as 1 g for frequencies above 200-300 Hz. Instruments having features that acceptably meet these requirements are commercially available. In addition, a vibration calibrator is required to calibrate the system by means of providing a known vibration (acceleration) input.

5.5.3 MEASUREMENT LOCATIONS

Measurements are to be performed at locations that correspond to the point or points of complaint and should be carried out upon that surface which is affecting the input of vibration to the complainant.

5.5.4 PERSONNEL

100

Persons technically trained and experienced in the current techniques of sound and vibration measurements should select the equipment and conduct the tests. The individual should be familiar with the manufacturer's instructions for the proper use of the equipment.

77

een meer been die begin staas plaat die die staak weer die die bestaan te staak van die eerste een die bestaar

5.5.5 MEASUREMENT PROCEDURE

Particular attention must be paid to the location and placement or mounting of the transducer. The unit shall be mounted on a rigid and smooth surface that experiences the vibration that is to be measured. The axis of the unit will designate the direction of the component of vibration being measured, and consequently, this information shall be recorded. The transducer may be mounted by any of several methods. Generally, a threaded hole or a bolt is provided in the base of the transducer which permits mounting the unit either directly to a surface, to a special adaptor that may then be cemented to a surface, or to a magnetic base that will attach. readily and securely to surfaces of ferro-magnetic materials. The transducer may also be mounted by means of double-sided tapes, cements (for permanent type installations), or greases. In all cases, the mating surfaces shall be smooth and free of. dirt. A light coating of oil or grease is recommended on metallic mating surfaces that will be in direct contact. The measurement system of accelerometer and instrumentation shall be calibrated prior to and after measurements.

Manufacturers' operating instructions for the measurement of vibrations should be followed. The rms amplitude of the vibration parameter measured (acceleration) should be recorded. (See Figure 1, Vibration Measurement Report Form)

FIGURE 1. EXAMPLE: VIBRATION MEASUREMENT REPORT FORM

sxamtner:		Date: Test Type: 				
Munfelpality: Addreas:						
Nolse Source:						
Type of Receiving Property: Complainant:	Residential ()	Commercial () Addregs:	Industrial ()			
Vibration Transducer Manuf: Type: Serial #:	Vibration An	alyzer Manuf: , Type: Serial ∦:	Calibrator Manuf: Type: Serial #:			
nalyzer Check Batt, G	Calibi	ration PretestdB PosttestdB	Surface Mounting Technique			
'est No. Vibration Parameter Neasured/Axis	Vibration Level	Sket	ch of Transducer Location			
			,			

____.

1

2

.

5.6 BIBLIOGRAPHY

Bolt, Beranek and Newman Inc., "Chicago Urban Noise Study: Noise in the Urban Environment," 1970.

Council of Governments: Metropolitan Washington, D. C. "Areawide Noise Measurement Procedures Manual."

Dames & Moore, prepared by, for U.S. Environmental Protection Agency Office of Noise Abatement and Control, "Construction Noise Impact Assessment Manual," September 1976.

Society of Automotive Engineers, "Measurement Procedure for Determining a Representative Sound Level at a Construction Site Boundary Location," SAE XJ1075.

Wyle Laboratories, "Community Noise Monitoring - A Manual for Implementation," July 1976.

U.S. Environmental Protection Agency Hearings, Noise Control, Legislation, and Enforcement, Testimony of Inglewood, California, September 1971.

Beranek, Leo L. (ed.), Noise and Vibration Control, McGraw-Hill, Inc., New York, 1971.

Goldman, D. E. and H. E. von Gierke, Chapter 44, "Effects of Shock and Vibration on Man," in <u>Shock and Vibration</u> <u>Handbook</u>, <u>Vol. 3</u>, edited by C. M. Harris and C. E. Crede, <u>McGraw-Hill Book</u> Company, New York, pp. 44-1 to 44-51, 1961.

ISO Standard, Publication ISO 2631-1974, Guide for the Evaluation of Human Exposure to Whole-Body Vibration, 1974.

B&K Instruments, Inc., 5111 West 164th Street, Cleveland, OH 44142, <u>Mechanical Vibration and Shock Measurements</u>, by J. T. Broch, 311 pp., Rev. Edition, May 1972.

Gen Rad, 300 Baker Avenue, Concord, MA 01742, <u>Handbook of Noise Measurement</u>, 7th Edition, by A. P. G. Peterson and E. E. Grose, Jr., 322 pp., 1972.

منتقرب الدارية وراية المحاصلية معتقرة الاستان. المراجعة والالتيار

AMBIENT SOUND 6.0

6.1 INTRODUCTION

1010

2010

The Model Community Noise Control Ordinance, Article X, specifies development restrictions for habitable and institutional facilities at land use areas exposed to excessive noise. The day/night average sound level is used as the descriptor of environmental sound. Evaluation of an area's day/night sound level requires the sampling of ambient sound during daytime and nighttime periods at a number of locations at the land use area being studied.

It is desirable to measure the ambient sound continuously for long periods of time (at least 24 hours). Without automatic and unattended sound level data processing equipment, continuous sampling is prohibitively expensive.

· · ·

Equipment is available for measuring community ambient sound levels for long periods (see Section 3.3). These equipment are, typically, quite sophisticated and therefore more expensive than Type 2 sound level meters. These units will, with some variation, acquire, calculate, and display sound level data (e.g., equivalent sound level $[L_{eq}]$, the day/night sound level $[L_{dn}]$ and other statistical sound levels). These units incorporate mini-computers or microprocessors which digitize sound level measurements, perform simple statistical algorithms and store the results in a memory for later retrieval. In some cases, the digitized sound level data are stored on a magnetic tape cassette for later analysis using a companion instrument.

Using these instruments is simply a matter of positioning the microphone at the proper location and then following manufacturer's instructions.

When this equipment is not available, the procedure described in the following section may be used. It requires an inexpensive Type 2 sound level meter. This procedure is described in much greater detail in "Assessment Manual: Acoustical Survey," Wyle Laboratories, 1978.

•

11111

82

and the second second for the second second second and the second second second second second second second sec

6.2 AMBIENT SOUND LEVEL MEASUREMENT METHOD

6.2.1 PURPOSE

The purpose of this sampling method is to provide communities with an inexpensive method to evaluate the day/ night sound level at a land-use area. Communities without the funds to purchase automatic unattended monitoring instruments can evaluate L_{dn} using a sound level meter. A tradeoff between sophisticated equipment and dedicated volunteers or personnel is required.

6.2.2 SAMPLING PERIODS

Sound level measurements shall be made during daytime (0700-2200) and nighttime (2200-0700) periods. Continuous measurements are the most desirable. Measurements for 20 minutes each hour are representative of an hour of continuous data. Practical considerations (personnel, costs, etc.) often limit the amount of data which can be collected. Sound level sampling can be accomplished for a 20 minute period as often as possible during the day. For areas with little change in sound levels, few samples are required to represent the day/night sound level, while at locations with large variations in sound levels, measurements each hour are required. A minimum sampling scheme includes a single measurement during each of four measurement periods.

Morning	•	Measurements	made	during	hours	0700-0900
Midday	-	Measurements	made	during	hours	0900-1600
Evening	-	Measurements	made	during	hours	1600-2200
Nighttime	-	Measurements	made	during	hours	2200-0700

Server al dar servers

6.2.3 EQUIPMENT

The community sound level measurement procedure outlined below requires a sound level meter meeting ANSI SL.4-1971 specifications for Type 2 sound level meters, a sound level meter calibrator accurate to ±.5 decibel, earphone or headphones compatible with the sound level meter, and an anemometer (wind speed indicator) accurate to ±10% at 20 km/hr. In addition, a windscreen recommended by the microphone manufacturer shall be employed during measurement periods. This practice reduces the influence of wind induced noise at the microphone.

The sound level measurement system shall be checked annually by its manufacturer or a certified laboratory to verify its accuracy.

6.2.4 PERSONNEL

コーシイ シンフィッ

It is recommended that persons technically trained and experienced in the current techniques of sound measurements select the equipment and conduct the tests.

6.2.5 MEASUREMENT PROCEDURE

Mount the microphone (or sound level meter/microphone combination if the microphone cannot be remotely mounted) on a tripod at a height of 1.2 meters (4 ft.) above the ground, and if practical at least 3 meters (9.8 ft.) from any substantial reflecting surface or any roadway. When circumstances dictate, measurements may be made at greater distances and heights and

84

closer to reflecting surfaces providing these facts are noted. If a site plan for proposed construction is available, select a location at the building line.

Set the meter to "fast" response and A-weighting. Record the time the sample will start. During the sample period, at the end of every 15-second interval, record the instantaneous meter reading on the lower part of the data log (Figure 1). For levels less than 70 dB, use slashed lines in the appropriate 2 dB-wide noise level band. Above 70 dB, fill in the form using the source codes given on the right side of the data log.

At the end of each 20-minute sampling period, count the occurrences for each 2 dB-wide noise level band and write the number in the "Total" column on the right. Record the concluding time of the sample in the upper left-hand corner of the data sheet.

The L_{eq} value for the sampling period is calculated using the Computational Work Sheet shown in Figure 2. Enter the number of counts per noise level in Column B. Multiply the counts in Column B by the number in Column C and enter the results in Column D. Add all values in Column B to determine Sum B, add all values in Column D to determine Sum D, and divide Sum D by Sum B. Locate the value in Column C that is approximately equal to Sum D/Sum B. The corresponding value in Column A is equal to L_{eq} .

Measurements shall not be made when the wind speed exceeds 20 km/hr (12 mph), when it is raining, or snowing.

85

ロロウナ フンコン

Measurements should not be made during environmental conditions (temperature, humidity) deemed unacceptable by the instrument manufacturer.

The sound level meter should be calibrated immediately before and after each measurement period. If the two calibrations differ by more than 1 decibel, the measurement should be repeated after the sound level meter is adjusted.

6.2.6 DAY/NIGHT SOUND LEVEL CALCULATIONS

To calculate the L_{dn} , a computational sheet similar to that shown in Figure 3 is used.

Twenty-four Hour Survey

Enter the number of hours per noise level in Column B. Add 10 decibels to the L_{eq} value computed before entering it on the work sheet for those samples between the hours of 10 P.M. and 7 A.M. (e.g., an L_{eq} of 54 for the hour between midnight and 1 A.M. is considered as 64 dB). Multiply the hours in Column B by the number in Column C and enter the result in Column D. Add all values in Column D to determine the Sum D. Divide Sum D by 24. Locate the value in Column C that is approximately equal to Sum D/24. The corresponding value in Column A is equal to the day/night sound levels L_{dp} .

Minimum Four Period Sampling Scheme

Enter the number of hours corresponding to the morning period in Column B for the corresponding noise level band. For the minimum four period sampling scheme, the morning period is from 0700-0900, or 2 hours in length. Repeat this procedure for the midday (7 hours), evening (6 hours and nighttime

33

فاستكرر المفريج ويوودون والورار والوروان ومه

(9 hours) periods. Add 10 decibels to the L_{eq} value for the nighttime period before entering it on the work sheet. If more than one period has the same L_{eq} value, add the hours together and enter this total in Column B opposite the corresponding sound level. Multiply the hours in Column B by the number in Column C and enter the result in Column D. Add all values in Column D to determine the Sum D. Divide Sum D by 24. Locate the value in Column C that is approximately equal to Sum D/24. The corresponding value in Column A is equal to the day/night sound levels L_{dn} .

87

4200

DECT CODY AVAN ADI T

A-WEIGHTED SOUND LEVEL, DECIDELS

ł

A	<u>ت</u>	С.	<u>t)</u>		
tiaha Levul Dani, dä	Count	Rolative Bitalio Energy	Kalative Totul Malative Energy		REMEITIS;
100 98 94	<u>N</u>	29,400 50,100 11,600		•	Each nalse reading must be taken at a standard itme Interval between measurements
94 92 90	X	20,000	4 	•	Each native level recorded is the instantoneous level
444	××	7,940 5,010		SIEP	PROCEDURE
84	<u>N</u>	2,000		1	Euter number of counts per noise tevel in Column B.
60 711 76		794		2	Multiply the counts in Column & by the number in Columns C and enter the secult in Column D.
74 72 70	к к	200 124 79,4		c l	Add all vulves in Culum & to determine Sum 8, add all values in Calums D to determine Sum D and divide Sum D by Sum 8,
64 64 62		<u>50,1</u> <u>91,6</u> <u>20,0</u> <u>12,6</u> <u>7,94</u>			tocale the value is Calumn C that is approximately equal Sum D/Sum B. The corresponding value in Calumn A is equal to L_{-} . Interpolate to the neurest 0.5 JB.
30 56 54 52 50 40 44 42 33 34 35 34 35 30	2 2 3 3 3 3 3 4 8 3 8 8 8 8 8 8 8 8 8 8 8 8	5,01 3,16 2,00 1,26 2,24 501 -,214 -,		EXAMPLE Given the fa count date, thulie N tevel Or 02 00 78 78 76	Using Steps 2 through 4 gives Steps 2 through 4 gives
Sum B + Sum D/Sum B	*	Sun D =		-	* by Unaur Interpolation in Column C and Column A.
		• • • • • • • • • • • • • • • •		=1	

· . · .

11.000

CHARACTER STAT

6.3 BIBLIOGRAPHY

ロロウナ つつつく

211121

2

Bolt, Beranek and Newman Inc., "Chicago Urban Noise Study: Noise in the Urban Environment," 1970.

Council of Governments: Metropolitan Washington, D. C. "Areawide Noise Measurement Procedures Manual."

Dames & Moore, prepared by, for U.S. Environmental Protection Agency Office of Noise Abatement and Control, "Construction Noise Impact Assessment Manual," September 1976.

Society of Automotive Engineers, "Measurement Procedure for Determining a Representative Sound Level at a Construction Site Boundary Location," SAE XJ1075.

Wyle Laboratories, "Community Noise Monitoring - A Manual for Implementation," July 1976.

U.S. Environmental Protection Agency Hearings, Noise Control, Legislation, and Enforcement, Testimony of Inglewood, California, September 1971.

91

an an an an ann an ann an tha shi an an tha an t

7.0 AUTOMOBILES

7.1 INTRODUCTION

Two test procedures for the measurement of automobile noise are described. One is a method which measures automobile passby noise while the vehicle is operating on local roads and streets. The other procedure requires the vehicle to operate at 3000 rpm engine speed while stationary test measurements are made. Both were developed as supplements to the EPA/NIMLO "Model Community Noise Control Ordinance" (EPA 550/9-76-003) (Article IX, 9.1), but may be adopted as an enforcement method for a community noise ordinance based on an alternate model.

A survey of State and local agencies, automobile manufacturers, and national standards groups such as American National Standards Institute, provide an indication of current measurement procedures in use. Figure 7.1 presents a matrix of the major features of each method studied. These methods were carefully examined and the best features of each were used to develop the methods presented here.

Test site conditions often affect the accuracy of the measured data. Since it is sometimes difficult to control site conditions, adjustments to the measured data are often needed when desired test site conditions (Section 7.2.4) cannot be attained. These adjustments are discussed in Section 2.3

A test procedure using full throttle acceleration was considered. A consensus of enforcement agents contacted

.

indicates that such a test is dangerous, requires excessive . space and personnel, and is time consuming.

A stationary test procedure is presented which reguires noise measurements to be made .5 meter (20 inches) from a vehicle's exhaust outlet. At this distance, the exhaust noise is the principal noise measured. Enforcement officials have indicated that modified or damaged exhaust systems are the principal cause of \noncomplying vehicles. Measurements made using this procedure are repeatable and defensible. An engine speed of 3000 rpm was selected for the test after consultation with the industry and local agencies. In the future, noise data from stationary tests will have been correlated with "in use" automobile noise and its effects on public health and welfare. Since a stationary vehicle noise standard is not discussed in the EPA/NIMLO Model Community Noise Control Ordinance, those municipalities wishing to adopt this procedure will have to adopt an ordinance to suit their needs.

93

atalia husin sukhunana huku su turun su ku su suna su na su su su su su su su su su

DECT CODV AVAIR

<u>ר</u>נג

				COLFRENT_			· · ·
VENICLE: AUTOMOBILE	111 111	Sound Lavel Actor	Alcrophone	Calibrator/ Calibration Processie	Stner Accustical Louipment	Jther [guidmint	Special Test or In-Situ Site/Description Restrictions
florida - Highmay Vanicle Test Procedure	11-5-11	Type 1, I, or SIA met <u>i</u> ng AMSI speci- fications	Aatched (6 SLA	Annual caile Bretion by monufacturer	Viniscreen aprianal	Standarð form	 e) Standard sits - no reflecting surface within 100° redius of car at passay point or 100° redius of aicroomone. b) Restricts site-reflecting surfaces. Ng masurgeence within 100° of turnel or overbase. No overhead within 50° of aicrooneme line or center of line of travel.
 Airmaagais, Aine, " Nighway Yenicia Test Procesure	1115-91	Any some lavel mear be standard	Any misro prove Ne standard		dinster men "Wenn Sportport ace"		Congress or asonals rosoway (urlace; any and free of burgs or cracks,
 Oreyst - Dn Highney Sound Level Messurannica	N114-#1	Type II Ainimus AM11 S_14=1971	Ransan Incidence Ficroprana	Calibrates stier th each uset yearly lab. calibration	Vindistmen	Data fermit aliphtardi Tripout wind MEtri piya chromatar	Nighmay - a) <u>Standard sites</u> no reflecting surfaces within 100 ⁻¹ radius of nicro- prome and nicrobrone point, b) <u>learnicted</u> <u>sites</u> reflecting surfaces within 100 ⁻¹ . Ail sites: concrets or asphale; no cummals or overgasses; no reflecting sur- faces within 10 ⁺¹ .
Flarida - New Yenicia Text Proxedura	1115 1531	Prezisian SLA at per Arti tperim ficacions		Callbration before and after and offer and overy 2 hours as a minimum if instrument is used >2 hours	VIAGE run		Flat response. We reflecting surfaces within 100' of a) microgramme, b) puint 50' peffer aliconome point. () puint 50' ben yous algroshope point. Ground surfaces second algentic or com- cress in a sres between algroshop and you 50' paints.
 - Jregon - Her Venigle Test Frührenre	1651 5516		•	Lab. Cálí- bratian annuaily	Vintereen osciensi lecarter	Silng pays - chromatari wind gauget deta form	Flat response He reflecting surfaces within 100' of a) algophone, b) point 50' we fare discensions point, c) point 50' bew yond microsnone point. Srowns surfaces indeth apphalt or components in Δ area between microsnone and two 50' points.
 sak 1986a - Saina Lavei Par Passenger Zare	. 1415 1511	7ypm (SLη Art] 33,t+1571	· _	Safére ind After and Tast	Cationaj esg. ru- carear ur granhic lovaj redireor (SAL J184)	Tochomicar Ananomicar	Flat onen insta-free af large raflacting turfacas free vehiclarer alsteanana. Sur- face of ground free from indu, grass, Tempa idil or asmas.
Vanigia maisa Com Vanigia maisa Com Portamune Processure		- Ab per SAE	AL DEF SAL	tofura sne after soch tast or svery 2 hours as sinsmuch	AL per SAE		Algnmay - a) <u>Standard sita</u> : No reflect- ing Lurfaces estinin 100' radius of eigen phone and microanome beanct. a) <u>Asstricted</u> sitar reflecting surfaces wichin 100', All sitass concrete er assnalt; no tunnets or oversassas; no reflecting sur- faces wichin 10'.
 Namess - Ventsuser Misse for Geny - Comerconny of Menith, Nomess	11.2.11	ng speci- fication	no Longi+ fication	CaliorAcur Duncing Ansi SI.L-1971	-inescreen "		3ry roadway. Songreis or asphalt, no loose caterial,
 úrant Aaticts, Aich, - Statichury Aucomotils Tatt	11411CAMPT	Type 2 SLM ANSI SI, 4=3975		Caliarstan at 1000 A2 at start ang ang of ach test taries. Annual calibra- tion of calibrater.	VindsCrawn with less than 1.5 dê affast on tyttam sann sitivity	Mampine (Sr 4) (p. 2103 ACCUFACY, 74CHOME (Sr 223 ACCU 73CY, 34CH 54CH 54CH 54CH 54CH 54CH 54CH 54CH 5	٠ ٠
 uragon - Dapartment af Invironmental Quality - Stationary nater Veniale Test	Armotuts			Calibration vach time vach. Tearty lan. chilbration	dinesaraan used	Standerd Farm	Free of sound reflecting objects within 50° of nicrosmone and 50° s7 venicie.
 Chicage, III, - New Adder Vericle Adjac Adagurthung		Ar par SAE JIGA Sparifican Light	As per SAE JIEA Imenifica- tions	As par SAE JIBA space- flactions. End to and and 1 nour incorpols			mermai concrete or isonait; no reflective lufaces esthin 100° of microsemene or 100° of centerine of venicle sath from thrattia Gene to throttie closed odint. Sround clear of standing water.
 Chicago, III, - Potor Ionicle Operation Hoise Peasurament	14-511u	AL PAP JAC JIEA IDecifica- Liona	As per CAE 2164 Long/leg- Lions	At par SAE Jidh saegi- Fications, Ing to eng	,		Preferres logacion (00° clear area around sigraphone and sigraphone paint, Suffees of groune normal, bighmae without meter.

•

. . .

0007 7775 ALLE 17. 1

93A

.

.

	1177		18574	<u>, , , , , , , , , , , , , , , , , , , </u>			VENICLE SPERATI
Psteorologicai Criteria/ Corrections	teflecting Surfaces/ Cricaria/ Carrectiont	Batuground Ambiant Asiba Criteria/ Corrections	Alcroonche Jaurce Pistance/ Correction	Risrophone Ofientation/ Movements	Scationery/ Engine Deracion	feesov/ Qoerstian	Augiliary Equipment Sperseign
•	Nonception for Corrections for Berkilel re- flecting surfacts. Non-specific sur- faces emotion 100' from eigrophome and catter point.	Ampione must be 10 cB below venicle hy	50° Nav bu 26° to 118°, Correc 118°, Correc	1'-6' adove rozdwey Ivrface: 35' saone Iurface on which aicrophone stands		Nariai higuway qaariician	
		Ameient + vehicle = ameient + 3 45	hoiso level criterie given st 20°, 25° and 50°			Ulfferant linits for >35 meh and <35 meh	
ter, wind speed 1 10 mm. Alweys 2 us windspress, Ne rain or show.	Surfaces must be parabled to Lane of travel. Mono- gram for care rection.	Has, vehicle met raise promand post-envious 6 d8 or more, Ambient met be 10 d8 beich vehicle more,	351-1187 Correction tu 507 in Table	If daple is used. microprens on tripod. 1.5' shuwe road turm facet <6' shuwe ground at excreptone			
Vind valueity ≮12 mmk		Amilant naise mett so 10 då lower (nat vekicle naise	50" 21" fram Canterline of vehicle path	kazia, sponé cue LosqueA		Highest ges us that verific segins at < 2/3 man.rpm and ends at less than ans.rpm prei < 35 man.full throttle	'dich you with agus maat
પind valuel⊏γ <icomm< td=""><td></td><td>,</td><td>50' ti' from canterling of land or traval</td><td>, Nicroponiu de SLA da Eriod Jimed at eicro- phone peint. 2'3 j' aven roakey surfece</td><td>·····</td><td>Lowest year in thet vehicle races mat, rps at (10 mph, thruttle fully gened</td><td>harmai (2006) . {angine}, ho quardrive yada</td></icomm<>		,	50' ti' from canterling of land or traval	, Nicroponiu de SLA da Eriod Jimed at eicro- phone peint. 2'3 j' aven roakey surfece	·····	Lowest year in thet vehicle races mat, rps at (10 mph, thruttle fully gened	harmai (2006) . {angine}, ho quardrive yada
uing veigetity cl0 mph	······································	At Isant 10 dB lower shaw vanicle neise	50' (15 a) "from canter" "link of lank of travel	à' above groune plane		jū wen at 35' from eicruphone point. Ugu lowest gaar am shat 25' past micru- shonu paint ingine is at won, reisd rym.	tamai majna tama. Aljou tan. Caling tan. Caling tan. Caling
vind vajacity ci2 man	nomugraon for carrestions for semilei rum fleting turfates, tetes met to tot from disconane ing says to tot.	Ambient at ledit 16 dil Jower then vanicle moise	50° Carvetions fer from 28° te 118°	2'-6' soors rūšduav surfaca: 3.5' s bura aigroonuna surfaca			·······
		Ambient connut se greater than which alone	13'-93' Jan tamerichi tarensimi im tarensmetiza tarense tirense			•	
vind raiosity «12 mm Ng rain af Incer	ng reflecting surfacts. 50° in frant Jul Saning sicros Saning sicros Saning sicros Saning sicros Saning sicros Mg "Selow" aicrostong	At least & de bajou venicle norse chart for correction]5° from ve- higle petR canterilme	5,5' saave ground level - 3,5' to 5' lauer coad turfect, grighted as per instructions	ALA JONATHAN Ipana with wide comm thrattla, thrattla, thrattla, gagat, gear in yourgal		vo sua, edusom zoarating, Jig gaga fan if postigie
Fine cl0 mm fair cannot be failing, Sround can be wet.			ti ti fran rear or either sien af venicle	fosition is at max. L _p . k.S [*] above the pround or orfentation tion as per toets.	Open throttle to reach man, recon, roe or man, governed		
Wine spend + 12 mm	na refigicing purfaces. pogr	lā sā saigu ve- hicis sound level	SQI 11' from centerline of venicle travel	Ricrophone on 60° tat, cable on trim pod. 1° 23° above surface.	البربية كالمراجع والمرجع	Ausz, trans. flat gear? Standare crans L2ng gear?, wide spe throatis, 50° before process, 50° before	
			Sa' from com	Cn LPIDON OF CAR,			

menne and an and an all an art of a space and an art of a straight of the set of the set of the set of the set a

Figure 7.1 Automobile Noise Measurement

Anasuramane Seatisticai Inquiramanes Jenar Jaca Jesurtad Source Quartel ET Reported Sound Quantility Reasonal Other Comments Firsonnel tequirat leferences California Highway Facroi "Sound Hassurdmans Fronta-duras" HPM 33.3 Seiver, tech-nician, Tech, traines and cartifies by highway pacrol. Highdae Ly as ve-Nisis passas Arms Ly as ver high passes . . . Ares Ly Fast ARS1 SUE Spec. 51.4-1971 Instudes form for reserving Highurs loved an vehicle passes . Average of two hignest readings active 2 cd of each cohor as each side California Venicle Sound Resourcement Procedure Jacoberacion cast unen werrancae k nuns/side aft vedicies Arme Ly fase response vasimet as ver Tigle plaams 2 28 grack for variation in equipment and task tite. Obtional segmention noise Average of two highest reatings within 2 st of sech other an each side Terniciat and driver. No by-statter within 50° of aiground or vehicle. Vins ver loticy, numedicy, tamentature k runs/side af vaniside Amet La Fast response Chiarvar and arivar, ailows one unditional person within 50° at venicia or microspone Average of two higness on Lach side (piction 2 dt). Lowless of two averages is reported. b runs/side of venicle or for side producing sevinusiy higher levels Fast resource Aret, methode Sas, lives recol 1'48 grass -. -Sciver and Lachielan, na scher passia within 50⁴ ----. 1-16 1346 response, 348, level Teasura on oden tidas of ram hicias with outtible cam haust watti 2 taa. masuraments within 2 28 are achieves Sriver, 18 mire that two tashielans testings Sacaground antient . Higness sound laves which is no white chan is as astron news highest laves tignest saund laves sout fast regionse Jriver, cash-nician, no closer then 53° from sicramone of remicie nigness of the matysiae.
 warząm of 2
 higrasz fwichin
 2 dłł far sakty
 tien SAL Procedures Reflection tarren-tion fields (s simular ta lia tac mait tarren mansive. I 24 grace given. Arrie Fast 21560934. 144. 14441 Technicist, no one within 30° to rear or slae of highestone

HEASUREMENT

.....

••

ł

. .

DTOT 2221 111

L

~

93C

1. **1. 1**. 1. 1. 1.

والمراكبين والمراجع والمتحد والمتحد والمتحد والمحتوي والمحتوي

7.2 AUTOMOBILES: PASSBY MEASUREMENT PROCEDURE

7.2.1 PURPOSE

A method for obtaining sound level measurements of automobiles operating on thoroughfares is described. It is difficult to control site conditions which affect the accuracy of sound level measurements at a road measurement site. If the preferred measurement site cannot be attained, adjustments to sound level measurements may be necessary. These adjustments are discussed in Section 2.3.

7.2.2 INSTRUMENTATION

The instrumentation necessary for the procedures includes a Type 2 (or better) sound level meter (per ANSI S1.4-1971 specifications); a sound level meter calibrator accurate to ±.5 decibel; an anemometer (wind speed indicator) accurate to ±10% at 20 km/hr; and a windscreen recommended by the microphone manufacturer. The windscreen should be used at all times for it reduces the influence of wind-induced noise at the microphone.

The entire sound level measurement system should be checked annually for accuracy by its manufacturer or a certified laboratory.

7.2.3 PERSONNEL

ý

Persons responsible for conducting sound level measurement tests should be trained in the operation of sound level meters and familiar with the test procedure and corrections which may have to be applied.

7.2.4 MEASUREMENT SITE

The preferred measurement site shall be flat, open and free of reflecting surfaces such as parked vehicles, signboards, buildings, or hillsides, within a 30 meter (98.5 ft.) radius of the microphone and a 30-meter (98.5 ft.) radius of a passing automobile (Figure 1) at the lane of traffic closest to the microphone. Sites may be prequalified at various locations in a community.

For those sites that do not meet the above specifications, adjustments to the measured noise level values are required. These adjustments are discussed in Section 2.3.

Within the area specified above, the traffic lane should be a straight run. The surface of the ground in the measurement area should be hard, dry, free from snow, standing water, soil, or other extraneous material.

7.2.5 VEHICLE OPERATION

Vehicles are observed during normal roadway operation. When measuring the noise level of a given vehicle, other vehicles on the same roadway should be outside of the measurement area as shown in Figure 1.

7.2.6 MEASUREMENT PROCEDURE

Mount the microphone (or sound level meter/ microphone combination) on a tripod at a height of 1.2 meters (4 ft.) ±8 cm (±3 in.) above the ground. Locate the microphone at a distance of 15 meters (50 ft.) from the centerline of the lane of traffic. If the microphone cannot be located 15 meters from the traffic lane, distances of from 7 meters to

المراجع المراجع المراجع المراجع المراجع والمراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراج

30 meters are acceptable. Adjustments are then made to the sound level measurements to correct them to the standard distance. The adjustments are discussed in Section 2.3. The microphone should be oriented per manufacturers' specifications.

Set the sound level meter to fast response and A-weighting. Observe the meter as the vehicle passes the microphone. Note the highest sound level observed on a data sheet (Figure 2).

Measurements shall be made only when the A-weighted sound level, including noise from wind and sources other than the vehicle being measured, is at least 10 decibels lower than the sound level of the vehicle. Background ambient sound measurements shall be made immediately before and after measurements or at regular intervals not to exceed 10 minutes.

Measurements should not be made when it is raining or snowing, or when wind speed exceeds 20 km/hr (12 mph). Measurements should not be made during environmental conditions (temperature, humidity) as indicated by the instrument manufacturer as unacceptable.

An external calibration of the sound level meter shall be made at regular intervals not to exceed 2 hours. If the calibration differs by more than 1 decibel, measurements taken between calibrations shall not be considered valid and the sound level meter shall be adjusted.

ALC: 12.11

.

đ

The following figure shows a passby test procedure. The same configuration applies to bus, truck and motorcycle noise measurements.

96

र्थ भारत प्रत्ये के विद्युप्त स्थित स्थित के स्थान के अधि

97

and a second states.

Vehicle !:		Examiner:			<u> </u>	Date:	Tin	ie:
Vehicle Hoke:		Vehicles			Теве Ту	- '961		
Second indexi		Vohlejo Mako:		gabiolo Tunas	_ ,			
Hegistered Owner:			······	venicie type.				1car
Uperator: License f: Address: Sound Level Heter Hausf: Calibrator Hanuf: Hicro, Hanuf: Type: Type: Type: Serial f: Serial f: Serial f: Heter Check D Batt. O Windscreen O''A" Weighting D Foot Reoponse Calibration PretextdB Ceneral Uenther Other Test Conditions Control Uenther Test Conditions Lp, dB Sketch of Test Site Image: If pregenified site, indicate site Image: If pregenified site, indicate site		Registered Guner;		- -	Address			
Sound level Heter Hanuf:		Operator:		l.icense	1:	Address;		
Type: Type: Type: Type: Serial 0: Serial 1: Serial 1: Serial 1: Heter Check D Batt. O Windscreen D"A" Weighting DFast Response Calibration PretestdB Other Concrait Venther Other Other Test Conditions Conditions Wind Speeds/secSources Test Conditions Location Lp, dB Sketch of Test Site		Sound Level Heter	Hamuf :	c	alibrator H	lanuf :	Hicro. Ham	of:
Heter Check D Batt. D Windscreen D"A" Weighting DPage Response Calibration PretestdB General Wenther		Se	Type; rfal \$;		Seri	Туре: al :	Ty _l Serial)e:
Bit is a set in the set		Heter Check D	Natt		Velohtine	DFast Romonae	Caltbration	Pretest dB
Concert Venther Other Test Conditions Wind Speeds/secSources Test Conditions kp, dB Setted Ro. Menourement Location Image: Setted Row Image: Setted Row Image: Setted Row Image: Settee Row Image: Settee Row Image: Settee Row	3	HELDE MACK IS			net Bur 105	OSlew Response	outintation	Posttestdß
B Test Ho. Heasurement location ip, dB Sketch of Test Site Image: Ima		Test Conditions	Conditions		Wind	Speed	_ю/вес	Other Sources
Image: Second	8	Test No. Heasu	rement location	Lus dB		Sketch of	Tear Sfre	
Image:		l	··· ··································	 ۱	f			
Image: state of the state				-				
Image: state of the state	5							
Image: state of the state			<u> </u>					
Image: state of the state								
If prequalified aite, indicate aite designation				-{{				
If prequalified site, indicate site designation	Telephone A	{ {						ļ
If prequalified site, indicate site designation				-				

			- -	-	1			
If prequalified site, indicate site designation	12							
If prequalified site, indicate site designation				-}}				
designation					TE	nreanalified aira	indiauto aita	
					des	ignation	INGICALE BILE	
		1 1]]		· ······		

.

. .

7.3 AUTOMOBILES: STATIONARY TEST

7.3.1 PURPOSE

The purpose of this test method is to provide a simple cost effective procedure which is repeatable and defensible. This test procedure allows the examiner to conduct the vehicle noise test at a proper test site under desired operating conditions.

7.3.2 INSTRUMENTATION

A Type 2 (or better) sound level meter (per ANSI S1.4-1971 specifications); a sound level meter calibrator accurate to ±.5 dB; an anemometer (wind speed indicator) accurate to ±10% at 20 km/hr; an engine speed tachometer* accurate to ±5% of full deflection; and a windscreen recommended by the microphone manufacturer are required. The windscreen shall be used at all times. Use of a windscreen reduces the influence of wind induced noise at the microphone.

. • •

and the second
The entire sound level measurement system shall be checked annually by its manufacturer or a certified laboratory for accuracy.

7.3.3 PERSONNEL

Persons responsible for conducting sound level measurement tests should be trained in the operation of sound level meters and familiar with this test procedure.

^{*}The tachometer shall be compatible with 4, 6, and 8 cylinder engines. All manufacturers' specifications for the tachometer's use shall be followed. See Section 3.7 for a discussion of tachometers.

7.3.4 TEST SITE

This site shall be flat, open, and free of reflecting surfaces, such as parked vehicles, signboards, buildings, or hillsides, within 7 meters (23 ft.) of the vehicle. An empty portion of a parking lot may be satisfactory (Figure 1). A number of sites in the community may be prequalified.

7.3.5 VEHICLE OPERATION

The engine shall be at normal running temperature with the transmission in neutral or park. Sound level measurements are made at an average steady-state engine speed of 3000 rpm.

7.3.6 MEASUREMENT PROCEDURE

Set the sound level meter on A-weighting, "fast" response. Place the microphone (or microphone/sound level meter combination) on a tripod at the same height above the ground as the vehicle exhaust outlet (Figure 2). The microphone shall be positioned with its longitudinal axis parallel to the ground, 500 mm (20 in.) from the edge of the exhaust outlet, and 45 ±10 degrees from the axis of the outlet. If the exhaust outlet is located 300 mm (12 in.) or more inboard from the vehicle body, the microphone shall be located 200 mm (8 in.) from the vehicle body at the specified angle.

Observe the sound level meter while the automobile operates as described in Section 7.3.5. Measurements are valid when the background ambient A-weighted sound levels, including noise from wind and sources other than the vehicle

100

under test, are at least 10 dB lower than the sound from the vehicle under test. Observe the background ambient sound level before and after each test.

Note vehicle model noise measurement results and other pertinent data on a data sheet. (Figure 3 contains a suggested format.)

For vehicles with multiple exhausts, the measurement shall be repeated at each exhaust outlet and all results reported on the data sheet.

Measurements shall not be made when the wind speed exceeds 20 km/hr (12 mph) or when it is raining or snowing.

Measurements shall not be made during environmental conditions (temperature, humidity) instrument manufacturer instructions deem unacceptable.

An external calibration of the sound level meter shall be made before and after each series of measurements. If the calibrations differ by more than 1 decibel, the measurements shall be repeated after the sound level meter has been adjusted.

A stationary automobile noise measurement is shown in the following photograph.

101

الله جنوبي والعالية. 11- جنوبي والعالية: التي يوتية المتحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالي

Figure L. Automobile: Stationary Test Procedure

Figure 3. Example: Vehicle Noise Measurement Report Form

103

and the second second

	· · · · · · · · · · · · · · · · · · ·		Time;	
Vehlela:	<u></u>	Teat Type:	· · · · · · · · · · · · · · · · · · ·	
Vehicie Hake:,	Vehicle Type:_	I.I.cenue:	ModelsY	ear
Reglatered Owner;		Addreas:		
)perator:	l.1cense	#:Addreas:		
Sound Level Meter Manuf: Type: Sertal #:	Ca	llbrator Hanuf; Type; Serial #;	Micro, Manuf : Type : Serial #:	
feter Check O Batt.	F) Windocreen O "A"	Weighting O Fast Response O Slow	Calibration Pret Post	est
General Test Conditions Condition Neasurement En Teat No. Location Sp	t Weather long gine wed (rpm) L _p , dB	Wind SpeedSketch of	m/sec Test Site	
			·····	

ويعاقبه بأفاط مدرائه ومادر مغامة والمنه

7.4 BIBLIOGRAPHY

Barrington, City of, "Vehicle Noise Enforcement Procedure," City Code No. 14 (Barrington, Ill.).

Bolt, Beranek and Newman Inc., "Chicago Urban Noise Study," BBN Report 1411, Nov. 1970 (Chicago, Ill.).

Council of Governments: Metropolitan Washington, D. C. "Areawide Noise Measurement Procedures Manual."

Florida, State of, "Highway Vehicle Test Procedures," Dept. of Pollution Control. Supp. No. 50, Chapter 17-18, Vehicle Sound Measurement.

Grand Rapids, City of, "Stationary Motor Vehicle Tests," Chapter 151 Title IX of City Code (Grand Rapids, Mich.).

Minneapolis, City of, "Noise Code: Chapter 389," Pollution Control Division, Highway Vehicle Test Procedure (Minneapolis, Minn.).

Oahu, City of, "Community Noise Control for Oahu," Dept. of Health, State of Hawaii, Chapter 44B (Oahu, Hawaii).

Oregon, S ate of, "Motor Vehicle Sound Measurement Procedures Manual," Dept. of Environmental Quality, Doc. NPCS-21.

Society of Automotive Engineers, "Sound Level for Passenger Cars and Light Trucks," SAE J986b (1975).

U.S. Environmental Protection Agency, "Urban Acceleration Noise Test Procedure for Light Vehicles," June 1977.

. ...

الحمول التي التي التي الم الموضوعات العام المربو المحمد والمالية . المراجع التي التي المراجع والموضوعات العام المراجع المحمد والمحمد والمحمد المراجع المحمد المحمد المحمد المحمد ال

ا بين

8.0 BUSES

8.1 INTRODUCTION

じっつう くくしい

Two bus noise measurement methods are presented in support of Article IX Section 9.1 <u>Motor Vehicles and Motor-</u> <u>cycles on Public Rights-of-Way</u> of the Model Community Noise Control Ordinance. A stationary bus noise regulation is not provided in Article IX, Section 9.1, but an applicable enforcement method is presented here for communities desiring to adopt this type of regulation.

The two noise measurement methods presented were selected after a thorough analysis of current available sound level test procedures for buses. The evaluation matrices for automobiles (Figure 7.1) and trucks (Figure 15.1) were considered in selecting these noise measurement procedures.

Both the passby and stationary test methods for buses are similar to those for automobiles. In the stationary test, the height of the microphone above the ground is 1.2 meters (4 ft.) at a distance of 7 meters (23 ft.) from the vehicle rather than the microphone height and distance required for automobiles. The microphone position selected for bus noise tests is similar to the position used for truck noise tests. Buses, in size and other characteristics, are considered closer to trucks than to automobiles. The federal Department of Transportation has used this microphone position for a noise test procedure for trucks quite successfully.

8.2 BUSES: PASSBY MEASUREMENT PROCEDURES

8.2.1 PURPOSE

A method for obtaining sound level measurements of buses operating on thoroughfares is described. It is difficult to control site conditions which affect the accuracy of sound level measurements at a road measurement site. If the preferred test conditions cannot be attained, adjustments to sound level measurements are made as outlined in Section 2.3.

8.2.2 INSTRUMENTATION

The instrumentation necessary for the procedures includes a Type 2 (or better) sound level meter (per ANSI S1.4-1971 specifications); a sound level meter calibrator accurate to ±.5 decibel; an anemometer (wind speed indicator) accurate to ±10% at 20 km/hr; and a windscreen recommended by the microphone manufacturer. The windscreen shall be used at all times. Use of a windscreen reduces the influence of wind induced noise at the microphone.

The sound level measurement system should be checked annually to verify its accuracy by its manufacturer or a certified laboratory.

8.2.3 PERSONNEL

÷

DECT CODV AVAI

ò

Persons responsible for conducting sound level measurement tests should be trained in the operation of sound level meters and familiar with the test procedure and corrections which may have to be applied.

8.2.4 TEST SITE

The preferred site used for measurements shall be flat, open and free of reflecting surfaces such as parked

106

and a second
vehicles, signboards, buildings, or hillsides, within a 30 meter (98.5 ft.) radius of the microphone and a 30 meter (98.5 ft.) radius of a passing vehicle (Figure 1) at the lane of traffic closest to the microphone.

Whenever possible, the site selected for monitoring should meet the preferred site specifications. For those sites which do not meet the above specifications, adjustments to the measured noise level values are required. These adjustments are outlined in Section 2.3. Sites may be prequalified at various locations in the community.

Within the area specified above, the traffic lane should be a straight run. The surface of the ground in the measurement area shall be hard, dry, and free from snow, standing water, soil, or other extraneous material.

8.2.5 VEHICLE OPERATION

Vehicles are observed during normal roadway operation. When measuring the noise level of a given vehicle, other vehicles on the same roadway shall be outside of the measurement area shown in Figure 1.

8.2.6 MEASUREMENT PROCEDURE

Mount the microphone (or sound level meter/ microphone combination) on a tripod at a height of 1.2 meters (4 ft.) ±8 cm (±3 in.) above the ground. Locate the microphone at a distance of 15 meters (50 ft.) from the centerline of the lane of traffic. If the microphone cannot be located 15 meters (50 ft.) from the traffic lane, adjustments are

then made to the sound level measurements to correct them to the standard distance. The adjustments are discussed in Section 2.3 of this document. The microphone shall be oriented per manufacturers' specifications.

Set the sound level meter to "fast" response and A-weighting. Observe the meter as the vehicle passes the microphone. Note the highest observed sound level on a data sheet (Figure 2).

ندر م

Measurements should be made only when the A-weighted sound level, including noise from wind and sources other than the vehicle being measured, is at least 10 decibels lower than the sound level of the vehicle. Background ambient sound measurements should be made immediately before and after measurements or at regular intervals not to exceed 10 minutes.

Measurements should not be made when it is raining or snowing, or when wind speed exceeds 20 km/hr (12 mph).

Measurements should not be made during environmental conditions (temperature, humidity) which the instrument manufacturers deem unacceptable.

An external calibration of the sound level meter should be made at regular intervals not to exceed 2 hours. If the calibration differs by more than 1 decibel, measurements taken between calibrations shall not be considered valid and the sound level meter shall be adjusted.

108

- - --

109

والمعادية فيرتهم والمتحد والمحافظ

Examlaer:		Date:Tlme:
Vehicle:	Test Type;	
Vehicle Make:Gre	Wt: Llcense;	Year:Year:
Registered Owner or Operator	Address:	
Sound Level Meter Manuf: Type: Serial #:	Calibrator Manuf: Type: Serial #:	Micro, Manuf: Type: Serial #:
Meter Check O Batt, O Windscree	O "A" Weighting O Fast Respon O Slow	nse Calibration PretestdB PosttestdB
General Weather Test Conditions Conditions	Wind Speed	m/sec
Test No. Measurement Location 1.	dB Sketch	of Test Site
		{
		e, indicare site
• • •		

,

Figure 2. Example: Vehicle Noise Measurement Report Form

. .

110

all and the second second

日本語のという

8.3 BUSES: STATIONARY METHOD

8.3.1 PURPOSE

The purpose of this stationary noise test procedure is to provide a method to measure bus sound levels which are repeatable and defensible. This type of test can be accomplished at a preferred site under desired operating conditions.

8.3.2 INSTRUMENTATION

A Type 2 (or better) sound level meter (per ANSI S1.4-1971 specifications); a sound level meter calibrator accurate to ±.5 decibel; an anemometer (wind speed indicator) accurate to ±10% at 20 km/hr; an engine speed tachometer* accurate to ±5% at full scale; and a windscreen recommended by the microphone manufacturer are required for the stationary noise test. The windscreen shall be used at all times. Use of a windscreen reduces the influence of wind induced noise at the microphone and protects the microphone.

The sound level measurement system shall be checked annually by its manufacturer or a certified laboratory to verify its accuracy. ÷...

فالمكرف والمرادين المرادي المارين المرار المراد المعالمة متماد الارتمار المراجع المعاريان

8.3.3 PERSONNEL

Persons responsible for conducting sound level measurement tests should be trained in the operation of sound level meters and familiar with this test procedure.

The tachometer shall be compatible with 4, 6, and 8 cylinder engines. All manufacturers' specifications for the tachometer's use shall be followed. See Section 3.7 for a discussion of tachometers.

8.3.4 TEST SITE

The site shall be flat, open and free of reflecting surfaces, such as parked vehicles, signboards, buildings, or hillsides, within 15 meters (50 ft.) of the vehicle and microphone. An empty portion of a parking lot may be satisfactory.

8.3.5 VEHICLE OPERATION

Turn off all auxiliary equipment which is installed on the bus and is not associated with the operation of the vehicle while in transit. The engine shall be at normal running temperature with the transmission in neutral or park. Attach the tachometer per manufacturer's instructions. For governed engines, the engine is accelerated to maximum governed speed with wide open throttle. For ungoverned engines, the engine is accelerated to speed at maximum rated horsepower.

8.3.6 TEST PROCEDURE

Set the sound level meter on A-weighting and "fast" response. Place the microphone on a tripod at 1.2 meters (4 ft.) ±8 cm (±3 in.) above the ground at a distance of 7 meters (23 ft.) ±.5 m (±20 in.) from the vehicle centerline on a line perpendicular to the exhaust outlet (see Figure 1).

Observe the sound level meter as the bus is operated as described in Section 8.3.5. Measurements are valid when the background ambient A-weighted sound levels, including

man han har states the second s

noise from wind and sources other than the vehicle under test, are at least 10 decibels lower than the noise from the vehicle under test. Observe the background ambient sound level before and after each test.

Note vehicle model, operation data and noise measurement results on a data sheet. (Figure 2 contains a suggested format.)

Measurements shall not be made when the wind speed exceeds 20 km/hr (12 mph) or when it is raining or snowing.

Measurements shall not be made during environmental conditions (temperature, humidity) which the instrument manufacturer deems unacceptable.

An external calibration of the sound level meter shall be made before and after each series of measurements. If the calibrations differ by more than one decibel, the measurements shall be repeated after the sound level meter has been adjusted.

The following photograph shows a bus noise measurement being made.

· . ·

والمحافظ والمح

コーフィ ンフィン

- 16

G j

前的

The

Ì

ì 1

ECT CODY AVAILABLE

Examiner:			ite:	TIme :
Vehlcle:		Teat Type:		
Vehleje Make:		1.1 cense :		Year
Registered Owner or Operator:	<u> </u>	Address;		,
Sound Level Heter Hanuf: Type: Sertal #:	Ca 131	orator Nanuf: Type: Serial #:	Hlero, Han Ty Sertal	uf: pe: #:
Heter Check O Batt, O Windscreen	. D "A" Wei	ghting O'Fast Response O Slow	Calibration	PretestdB PosttestdB
General Veather Test Conditions		Wind_Speed	m/aec	
Measurement Engine Test No. Location Speed (rpm) ^L p	d B	Sketch of	Test Site	
			·	
]			}
	·			
		If prequalified site, 1 designation	ndlcate site	

.

FIGURE 2. EXAMPLE: VEHICLE NOISE MEASUREMENT REPORT FORM

i

8.4 BIBLIOGRAPHY

• • •

.

Barrington, City of, "Vehicle Noise Enforcement Procedures," City Code 14 (Barrington, Ill.).

Bolt, Beranek and Newman Inc., "Chicago Urban Noise Study," BBN Report 1411, Nov. 1970 (Chicago, Ill.).

California, State of, "California Vehicle Code: 1973," Section 27160 (Sacramento, California).

Council of Governments: Metropolitan Washington, D. C. "Areawide Noise Measurement Procedures Manual."

Department of Transportation Bureau of Motor Carrier Safety Regulations for Enforcement of Motor Carrier Noise Emission Standards, 41 FR 28267, July 1976.

Florida, State of, "Highway Vehicle Test Procedures," Dept. of Pollution Control, Supp. No. 50, Chapter 17-18, Vehicle Sound Measurements.

Grand Rapids, City of, "Stationary Motor Vehicle Tests," Chapter 151 Title IX of City Code (Grand Rapids, Mich.).

Minneapolis, City of, "Noise Code: Chapter 389," Pollution Control Division, Highway Vehicle Test Procedures (Minneapolis, Minn.). · · · · •

. . . .

فمحمد والمراجع ومحمد والمحج والمحج

Oahu, City of, "Community Noise Control for Oahu," Dept. of Health, State of Hawaii: Chapter 44B (Oahu, Hawaii).

Oregon, State of, "Motor Vehicle Sound Measurement Procedures Manual," Dept. of Environmental Quality, Doc. NPCS-21.

Society of Automotive Engineers, "Exterior Sound Level for Heavy Trucks and Buses," SAE J3666.

Society of Automotive Engineers, "Measurement of Exterior Sound Level of Heavy Trucks under Stationary Conditions," SAE J1096.

U.S. Environmental Protection Agency, "Draft Bus Model Noise Ordinance."

9.0 CONSTRUCTION EQUIPMENT

9.1 INTRODUCTION

コーンナ ンンコン・・・・・

Construction site activity is a significant contributor to community noise. Construction noise is discussed as a prohibited act in Article VI, Section 6.2.6 of the Model Community Noise Control Ordinance. However, construction equipment noise is not discussed as separate noise sources requiring legislation in the Model Community Noise Control Ordinance. A measurement procedure is presented which can be used to identify the principal contributors to construction site noise. Modification of a community's noise ordinance may be required for communities instituting such controls.

Numerous methods for measurement of construction equipment noise were reviewed and evaluated. Figure 9.1 presents the evaluation matrix. A test method, based on EPA's noise measurement procedure for portable air compressors, is also presented.

Equipment noise levels and the amount of time the equipment is in its noisiest mode can be used to compute the average sound level (L_{eq}) contributed by the equipment to the total site average sound level.

The computation is accomplished in the following manner. The noise of each item of construction equipment is

measured using the test procedure presented in this section. The typical amount of time that the equipment is in its noisiest operating mode is also noted. The distance from the center of equipment activity to the construction site boundary is determined. These data are used in the following equation to determine the average sound level contribution of the equipment to the site average sound level L_{ecc} .

Equipment: $L_{eq} = L_p - 20 \log(d) + 10 \log(U.F.) - dB$

 L_p is the average of the measurements at 7 meters

- d is the distance from equipment activity to site boundary
- U.F. is the usage factor. It is the ratio of the period of time the equipment is in its noisiest mode of operation to the period used to determine the site average sound level (or one hour)

The site average sound level is measured using the procedure provided in Section 5.2.

118

COULSHENT

.

	<pre>«catigneric activity »catigneric activity »da ddfiat, yward Lave) Assa, Aobile Canstruction Equip.</pre>	INI 101 101	Saund Lavei <u>Magaa</u> ispa i AASi	<u>Miccophyna</u> Juliya	Calibrator/ Calibration Procedure Securitora- tor Plaid calibra- tion before a aftar inco	Strer Accurstical foulomme indiscrash {Ost.}	Jthar fourment rag. Jose Recorder (Dec.) Anonimeter R.P.M. In- dicator 153. Thermi- meter	Somelai Tane or In-Situ Sita/Baseriation Assistator Jud' vantela bath - No systandar Class 100 radius within 50 Ward-packed or toild surface from of voqutation
: :	flarida - Novy Vehidlo Tael frazadura	3645 34 12	Precision Sin as per Acti speci- ficacions		Calibration before and after sech use dr every 1 hears is a ateletes 1 is used >2 meets	Vindseraan	Tachuna tar Anusuna tar	Flat response, me reflecting surfaces within 100' of a) elerostance, b) point 50' before migraphone point, c) point 50' be- yond elerostance point. Ground surfaces : semeth signait or com- crate in 4 area between elerostance and two 50' points.
	Sarrington, 111. – Vanitio Molisa Ex- factment, Processora	n111-11	As por SAE	An par Sae	Safarm and after anti- that or every 2 hours as alocimen	Ak per SAR		Highmay - a) <u>Standard situ</u> : No reflect- ing suffaces within 100 ¹ redius of elera- proum and eleraphase poles. 3) <u>Astrictur</u> iigt reflecting surfaces attain 100 ¹ . All situs: concress or standit; no tummit or aversasses; no reflecting sur- faces within 10 ¹ .
,	Alemanolis, Riem. – Highney Yanisia Tass Prozesure	1113-11	Any suund lavai micar	zay distan stana		Vîndarom Natas Iştraşti axa st	**********************	Constess or associt roomay surface; dry and frms of bunus or crasts.
	Chidago, 111 Auno Macar Vaniala Anisa Maguelanast		Lana a	5	•			
	Grand Asalda, Alsth. • Stationary Automobila Test	STATIONALY	Trajas 2 SLA JARSI SI., № 1971		Calibrated at 1009 Hz as start and and of applitud for an Annual calibratur.	Vindsstrum with lata then 2.5 dB effect on tytem ser- sitivity	Anamatin (8 f vi (8 f 2)03 Adauf Aday, 123 Adauf 123 Adauf 123 Adauf 124 Adauf 125 Ad	
	na prosai i tan Kasaling ton	1x-537G	Τγραι 50-9 Ant51 51.4−1971		Bafara und dfair uach ias t	Cationei ang, ra- Cardar ge grannia lengi ritoriar (Saf Jidh)	Tachonaite Ceir Angunaithe Ceir	Flar comm space free of large reflecting surfaces from venicle or electonome. Sur- face of ground free from snow, gress, loose sell or asmes.
								1997 (1985) e e
					1	19A		

.
Astestalogical Critaria Carretions Astord all mailenst com- ditions. Vind < 12 mph	Surfaces/ Gricefia/ Corrections An large re- flecting surfaces in 100*	Lamblenic doine Gritaria <u>Carroctions</u> AC Imast locad Iomar then thet equip.	Sourca Olytenca/ Correction * asova fround 50' from vaniala ar peth cunter lime	Al Croglone Grienta clan/ Mountant	Stationary Engine Jouracion Jouracion Jourate de mar Jourate de normal (se at marmoite level	Passay/ Nostaalan	Autiliary Equipment Sources (D) Second moles lavels. Second sec of y goar ratios. New JA of rated power source seems, Jk source seems, Jk thru attacts then closed,	Personnel Renuired Renuired Renuireineu L'exectionce
Man, wind speed 10 mpt, Alexys us windstreet, No rele or show,	Surfacas must be paralial to lane of traval. Xono- gram for curm rectica.	fisa, vanicia mas raiso pre- and post-rampiont 5 di ar aora, Ambient must ba 10 di baian vanizia ana,	35°-ti8° Gofrection to 50° in Table	if camin is used, microprote on fripod, 4,51 above road sur- fado;46 above ground at microprome				
vilnei vertos;tty ≮12. ment	Ramuerson far antrassians for parailai ran flassing surfacas, Annosraliai sur- facas mas ba 100 from alcreptone and passity paint.	Ambfent at loast 10 di Lower (han vohiete nying	jā" Garrestians far fran 28' to jīši	2'-5' abeve fördung utfatet 3,5' sögve alereskone surfate				Triver and Inchnician, a other secole eitnin 50*
· <u>······</u>		Ambiang + vohigin = ambiang + j då	Naiya lewei critaria elvan at 20°, 25° and 50°)ifferant lisits for >15 mm and 15 mm		······································
'sing veimgity «12 mph Harain pr show	And reflecting surfaces. 50 in front and balling airre- prove point. JST "server" and "selver" and "selver" at repairs	At impst 8 d8 Julion vakicie melse chart for carruition	15º from sam Nicia path canterline	4.5' above gradahd lavej - J.5' to 6' adve road jurfata, arlatas a par imtrustione	fan germened Iwwa wich nide open nide open clutch en- clutch en- gaget, gaar in metral		40 Juli, oful onlyn t odwrating. Gisen- gada fan i f godsible	Griver, nd more than two teetrolicians
Wind vatosity Ciûnan	, , , , , , , , , , , , , , , , , , ,	At least 10 dê lower that vehicle naise	50* (15 e) From conter- line of tame of travel	4° jbove grownd stone]0 m 41c7 Use 1 that 2400 45 m	M at 254 from prome point. Gunsi (gins to 25 pint engine is point engine is a. rated rpm.	Yarmai enging Ismi, Ailan Ismi, Cabing Jetusen rung Detusen rung	Starver an driver, allee om adalise Darton wich a Sa' of vencie or eleroperte
				1198				

,

.

.

Figure 9.1 Construction Equipment Noise Measurement

د

,

119C

קרפד החפע אוואון אחי ה

-

. * :

· . · . · . · . · . ·

9.2 CONSTRUCTION EQUIPMENT

9.2.1 PURPOSE

A procedure which can be used by communities to measure the noise of individual construction equipment at a site is described. The procedure is designed to enable these measurements to be made while other equipment is operating on the site. The noise of individual equipment is used to determine the equipment which is the major contributor to construction site noise.

9.2.2 INSTRUMENTATION

A Type 2 (or better) sound level meter (per ANSI S1.4-1971 specifications) a sound level meter calibrator accurate to ±.5 decibel; an anemometer (wind speed indicator) accurate to ±10% at 20 km/hr; an engine speed tachometer accurate to ±5% at full scale; and a windscreen recommended by the microphone manufacturer are required. The windscreen shall be used at all times. Use of a windscreen reduces the influence of wind induced noise at the microphone.

The sound level measurement system shall be checked annually by its manufacturer or a certified laboratory to verify its accuracy.

*Tachometers shall be compatible with both two and four stroke engines. A mechanical tachometer may be required for ungoverned diesel engines, see Section 3.7.

and the second second free to be a second
9.2.3 PERSONNEL

Persons responsible for conducting sound level measurement tests shall be trained in the operation of sound level meters and familiar with this test procedure.

9.2.4 TEST SITE

If possible, the construction equipment being tested shall be moved to an area at the construction site as flat, open, and free from large reflecting surfaces and other noise sources as possible.

9.2.5 EQUIPMENT OPERATION

Stationary equipment (e.g., pavement breakers, air compressors, cranes, concrete trucks) are operated at load and performance (i.e., engine speed, breaking rate) which are typical of its normal operation.

Mobile equipment (e.g., graders, scrapers, dozers) shall be operated in a stationary position with the engine at governed speed, or if ungoverned, at the engine speed corresponding to rated horsepower and, if possible, with auxiliary equipment operating.

9.2.6 MEASUREMENT PROCEDURE

Set the sound level meter/microphone on a tripod at a height of 1.2 meters (4 ft.) ±8 cm (±3 in.) above the ground. Measurements are made 7 meters (23 ft.) ±8 cm (±3 in.) from a plane formed by the major components of the equipment under test (see Figure 1). Set the sound level meter for "fast" response and A-weighting. Operate the equipment for a sufficient period to allow a repeatable maximum sound level

121

المرجوع والمراجع المحمد محمد محمد فالمحمد

reading to be observed. A total of four equi-spaced measurements are made 7 meters (23 ft.) from the equipment surface. Figure 1 presents reference surfaces for common equipment types. The reported sound level for the equipment unit is the arithmetic average of all four measurements.

Measurements are valid when the background ambient A-weighted sound levels, including noise from wind and sources other than the equipment under test, are at least 10 decibels lower than the noise from the equipment under test. Observe the background ambient sound level before and after each test.

If the background ambient sound levels are within 10 decibels of the measured sound levels, either adjust the measured sound levels for other noise or repeat the measurements at a distance less than 7 meters (23 ft.) from the equipment (Section 9.2.7).

Note equipment model, operation data and noise measurement results on a data sheet. Figure 2 contains a suggested format.

Measurements shall not be made when the wind speed exceeds 20 km/hr (l2 mph) or when it is raining or snowing.

Measurements shall not be made during environmental conditions (temperature, humidity) which the instrument manufacturer deems unacceptable.

.

i

An external calibration of the sound level meter shall be made before and after each series of measurements. If the calibrations differ by more than one decibel, the

122

- Marine and the second of the second of the second s

measurements shall be repeated after the sound level meter is adjusted.

The following photograph shows a construction equipment noise measurement being made.

9.2.7 ADJUSTMENTS FOR HIGH AMBIENT NOISE CONDITIONS

Measurements are valid when the background ambient A-weighted sound levels, which include wind noise and all sources other than the equipment under test, are more than 10 decibels lower than the measured sound levels. Observe the background ambient sound level before and after each test. If these conditions are not met, two options exist:

1. Measurements can be made at locations less than 15 meters (23 ft.) from the equipment being studied. The distance should be selected so that background ambient sound levels are at least 10 decibels lower than the measured sound levels. Carefully note the distance used for the measurements. Table 1 can be used to adjust the measured sound levels to a standard 7-meter (23 ft.) distance. If measurements are made at distances from the equipment less than twice the equipment major dimension, near field effects can result in questionable results. Therefore, this situation should be avoided. The following alternative can be used.

1

٠.

 A second sec second sec

2. Measurements of the source and of the background ambient sound levels are made at the 7-meter (23 ft.) distance. Corrections are applied to the measured sound levels in accordance with Table 2 if the background ambient sound level is from 3 to 10 decibels below the measured sound level. If the background ambient sound level is 0 to 3 decibels below the measured sound levels, measurements closer to the source should be made, being aware of the near field effects described in Option 1 above.

1

ì

Ť.

Examiner:	Da	ite:Time:
Vehicle:	Теят Туре;	
Vehicle Make:Gross	: License;	Model:Year:
Registered Owner or Operator	Аddress;	
Sound Level Neter Manuf: Type: Serial #:	Calibrator Manuf: Type: Serial #:	Micro. Manuf : Type : Serial # :
Meter Check O Bart. O Windscreen	O "A" Weighting O Fast Response O Slow	Calibration PretestdB PosttestdB
General Weather Test Conditions Conditions <u>Measurement Engine</u> Test No. Location Speed (rpm) L _p , d	Wind SpeedSketch of	m/sec Test Sire
	If prequalified site, 1 designation	ndicate site

ورادتها فالمعادية المحاط المحاصي والمحا

FIGURE 2. EXAMPLE: VEHICLE NOISE MEASUREMENT REPORT FORM

7F07 0000 10110 ----

TABLE 1

ADJUSTMENTS FOR MEASUREMENTS MADE AT DISTANCES OTHER THAN 15 METERS

Distance, Meters	Correction to be Added, dB
3	-7.5
4	-5.0
5	-3.0
6 7	0
8	1.0
9	2.0
	4.0
12	4.5
13	5.5
14	6.0
	0.5

. ..

,

🕶 and the second s

•

€) o ⁸⁸⁸

Ì

TABLE 2

CORRECTION FACTORS FOR BACKGROUND AMBIENT SOUND LEVELS

$$L_{s} = 10 \log_{10} [10^{L}p^{/10} - 10^{L}o^{/10}]$$

 L_S is stationary source sound level contribution L_p is measured sound level with source operating

Lo is background sound level with source not operating

Difference between Lp and L _O	n Subtract Values from L _p to get L _s
0	*
· 1	*
2	* ·
3	3.0
4	2.5
5	2.0
6	1.5
7	1.0
8	. 1.0
9	0.5
10	0.5

*Cannot be determined. Background levels must be lower.

الامن المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المحافظ المراجع المحافظ المراجع المحافظ المراجع المحافظ المراجع

9.3 BIBLIOGRAPHY

ġ

9

مصطعفة المراجع والمستحد المراجع

1774

Barrington, City of, "Vehicle Noise Enforcement Procedures," City Code 14 (Barrington, Ill.).

Chicago, City of, "Noise Ordinance," Dept. of Environmental Control (1971).

Compressed Air and Gas Institute, CAGI-PNEUROP Test Code for the Measurement of Sound from Pneumatic Equipment, 1969.

Council of Governments: Metropolitan Washington, D. C., "Areawide Noise Measurement Procedures Manual."

Florida, State of, "Highway Vehicle Test Procedures," Dept. of Pollution Control, Supp. No. 50, Chapter 17-18, Vehicle Sound Measurements.

Grand Rapids, City of, "Stationary Motor Vehicle Tests," Chapter 151 Title IX of City Code.

Minneapolis, City of, "Noise Code: Chapter 389," Pollution Control Division, Highway Vehicle Test Procedures Minneapolis, Minn.).

Oahu, City of, "Community Noise Control for Oahu," Dept. of Health, State of Hawaii, Chapter 44B (Oahu, Hawaii).

Society of Automotive Engineers, "Exterior Sound Level Measurement for Mobile Construction Equipment," SAE J88, 1975.

128

menter and the second of the s

10.0 MOTORBOATS

10.1 INTRODUCTION

The Model Community Noise Control Ordinance contains a section (Article VI, Section 6.2.15) which specifies maximum allowable motorboat noise. The measurement procedure presented in this section is based on the Society of Automotive Engineers Recommended Practice J-34B.

10.2 MOTORBOATS

10.2.1 PURPOSE

The purpose of this measurement procedure is to provide a means for enforcement officials to measure motorboat noise from a position on shore or at a floating platform. It is based on an industry accepted procedure developed by the Society of Automotive Engineers.

10.2.2 INSTRUMENTATION

A Type 2 (or better) sound level meter (per ANSI S1.4-1971 specifications); a sound level meter calibrator accurate to ±.5 decibel; an anemometer (wind speed indicator) accurate to ±10% at 20 km/hr; and a windscreen recommended by the microphone manufacturer are required. The windscreen shall be used at all times. Use of a windscreen reduces the influence of wind induced noise at the microphone.

The sound level measurement system shall be checked annually by its manufacturer or a certified laboratory to verify its accuracy.

10.2.3 PERSONNEL

Persons responsible for conducting sound level measurement tests should be trained in the operation of sound 129 level meters and familiar with this test procedure.

an an the second state of the

10.2.4 TEST SITE

The test site shall be located on a portion of the body of water where the boat can operate along a straight line in a safe manner. The water depth at 25 meters (82 ft.) from the shoreline or a measurement platform is sufficient to allow normal operation of the motorboat being tested. Three points are established by marker buoys (Figure 1):

- Starting Point: A point 30 meters (98.5 ft.) ahead of a perpendicular to the boat path passing through the microphone (onshore).
- Entrance Point: A point 15 meters (50 ft.) ahead of a perpendicular to the boat path passing through the microphone (onshore).
- End Point: A point 15 meters (50 ft.) beyond a perpendicular to the boat path passing through the microphone (onshore).

If the measurements are made on shore, the area along the test site shall be flat, open and free of large reflecting surfaces such as vehicle, signboards, buildings, or hillsides within 30 meters (98.5 ft.) of the microphone.

10.2.5 MOTORBOAT OPERATION

Start the motorboat from a standstill at the starting point and approach the entrance point at one-quarter throttle (approximate). Upon reaching the entrance point, open the engine throttle fully. Maintain this condition until the end point is reached. Deceleration can then begin.

10.2.6 MEASUREMENT PROCEDURE

DIDT

うつうて

i

Set the sound level meter/microphone on a tripod at a height of 1.2 meters (4 ft.) ±8 cm (±3 in.) above the surface

والمراجع والمراجع والمعمومة فالعام ومعمومهم والمراجع

of the water. The microphone shall be located 25 meters (82 ft.) ± 25 cm (± 10 in.) from the boat's path as indicated in Figure 1.

If the on shore test site requirements outlined in Section 10.2.4 cannot be accomplished, the microphone can be placed on an anchored boat 25 meters (82 ft.) from the path of the motorboat being tested. Care must be taken that the measurement platform is free of reflecting surfaces.

Set the sound level meter for "fast" response and A-weighting. Observe the sound level meter while the boat passes. The maximum sound level observed while the boat is between the entrance and end points shall be noted on a data sheet. (Figure 2 contains a suggested format.)

Repeat the procedure in the opposite direction. The reported sound level for the motorboat is the maximum of the two measurements. Measurements are valid when the background ambient A-weighted sound levels, including noise from wind and sources other than the boat under test, are at least 10 decibels lower than the noise from the boat under test. Observe the background ambient sound level before and after each test.

Note motorboat and engine models, operating data, and noise measurement results on a data sheet (Figure 2).

Measurements shall not be made when the wind speed exceeds 20 km/hr (12 mph) or when it is raining or snowing.

Measurements shall not be made during environmental conditions (temperature, humidity) which the instrument manufacturer deems unacceptable.

 $\{ i \}$

131

Sector States

part of a second second

An external calibration of the sound level meter shall be made before and after each series of measurements. If the calibrations differ by more than one decibel, the measurements shall be repeated, after the sound level meter is adjusted.

The following photograph shows a noise measurement of a motorboat being made.

a name and a support of the support

FIGURE 2. EXAMPLE: VEHICLE HOISE HEASUREMENT REPORT FORM

T

114

÷

コークイ シンフィ ・・・・・

Examiner:		······		Duce:	TI	ще:
Vehiclei	******			Теат Тура;	·	
Vehicle Ha	ke:	Vehicle Ty	pe:	I.1 conuo ;	Model:	Year
Registered	Owner :			Addreaus		
Operator:_		l.1c#	196 /: _	Addreast		
Sound Lave	l Meter Manuf: Type: Sertal #:		Calth 	rator Manuf: Type: Serial #:	Hiero, Man Ty Serial	af: pa: #:
Netor Chec	k O'Barr. O'Windo	creen D'	'A" Hal	ghting Offast Respons Official Official	e Calibration	Protest Posttest
Test Cond L	General Weathe Flong Conditions	:r		Wind Speed	m/uec	
Peut No.	Mensurement Location	ւ. Դր, ժե		Sketch o	f Test Site	,
				[
	· ,					
		-				
		-				
		_				
		-		If prequalified site, designation	indicate eite	
	·				····]
				•		

10.4 BIBLIOGRAPHY

с Ц

1.000

للكنول من المنتخط الم المنتخط المنتخ

New Jersey, State of, Dept. of Environmental Protection, "Noise from Vessels and Watercraft," New Jersey Register Volume 9 #4, April 7, 1977.

Society of Automotive Engineers, "Exterior Sound Level Measurement Procedures for Pleasure Motorboats," SAE J34 (1973).

•••

.. .

- - - - - -

11.0 MOTORCYCLES

11.1 INTRODUCTION

Two motorcycle noise measurement methods are presented in support of Article IX, Section 9.1 <u>Motor Vehicles and Motorcycles on Public Rights-of-Way</u> of the Model Community Noise Control Ordinance, a passby test procedure and a stationary procedure. A stationary motorcycle noise regulation is not provided in Article IX, Section 9.1, but an applicable enforcement method is presented here for communities desiring to adopt this type of regulation.

These methods were selected after a thorough review and analysis of current available sound level test procedures for motorcycles. Figure 11.1 presents the evaluation matrix used in selecting these methods. In addition, test methods for automobiles (Figure 5.1) were also reviewed.

Although many motorcycles come equipped with tachometers, an external tachometer may be necessary for those vehicles not so equipped. Since the number of cylinders and firing arrangements may differ from motorcycle to motorcycle, care must be taken in correctly wiring and interpreting the indications of an external tachometer. A local automotive supply house or motorcycle shop can supply guidance in purchasing an external tachometer. Due to the large variation in motorcycle engine size and operating characteristics, no one engine speed can be specified for the stationary measurement method. Fifty percent of the speed at maximum rated horsepower is suggested as the best speed to be used.

136

میکنونی و ایران میکنونی میران ایران ای

Figure 11.1 Motorcycle Noise Measurement

HEATURCHENT

••••

		<u>-101</u>		A	LATION			VENICLE SPERATIO	
	· · · · · · · · · · · · · · · · · · ·	- Auflacting Surfactor Criteriad Corrections Corrections for Persilal ra- flacting sur- flacting sur- flacting sur- flacting sur- flacting sur- flacts. Mus- persilal sur- flacts surt be 100° from, and postby and postby	Esciercumd Amblent Polso Criteria Corrections Amblent must be 10 aß beice vehicle Ly	Al crimbiono Source Distance/ Carregilan 50 ¹ May be 76 ¹ to 18 ⁴ . Carrec- Lians to 50 ⁴ Included	Alcrophune Delemistion/ <u>Hordmini</u> 2°-6° above road- way surface:]} ² above surface on which alcrophone stands	Stationary freine georation	Passby/ Dogracion formal highway operation	Aus Hary Equipment Operation	Personnel Renuired Briver, technician, Tech. trained and certification y high- wey patrol.
	•		Anaiant noisa anst be 10 dä Iguer than vahicta neisa	50" tim fran cantaerling af vahicle Jach	k* +I ^{nt} skove the r0etwy		Highert gaar so that vehicla be- gins at < 2/3 max, rum and rods at less than mis. rum and < 35 mm, fuil throttie	With and with- out douipment	
			Ambiant + venicle = am- șiant + 3 ali	Naise level ariteria given at 20', 25' and 50'			Different limits for > 35 mph and < 35 mph	- • • •	• • • •
	_	Au raflau;- ing jurfacat. 100*	is di buian vanicia sauna- ievai	50° 41° fram cantarilite af vaniala traval	Aicrostana an 50° ent. cabie an trin pat. * st pat. * st pat. * st	_	Ante, trans.(1st gear) Standard truns.(2md gear), wide open thrattle 50° before signs phone point	•	ariver, typhnisian, no closer than 50° from acroshone or vonisie
- a -		Carrent Ion table For large ruflegt= legt surface at leggt c 10*	ig al boion veniale sound lavei	50° from com- certime of truffic	On trianad on eat, cable SQ* from canter of traffle tang, 4 s4* choose surface.				Technician, no sma within 50° cm rear or sine of micro- phone
		Nampiraah for carractians for genalini ra- l'Inectine sur- fotas, Akar- parainai sur- fotas, ante ba fotas, ante ba logo frat from alextaniana alextaniana	Ambient at least 10 dB Ios- er then vehicle neise	50° Corrections for from 16° to 118°	21-61 Abave roadnay surfann; 3.5° above nicrophone surface	, , ,			Griver and techni- clan, no other pacapie within 50'
	-		Ann I ann, Sourrd I ann i Anna t ba at I aant 10 dh vaiome webi (ta I durbd I avu (t5 mters from vanisie path	1,2 maters amon ground, priented per menufacturers specifications		Fuit chrocole acceleration in second year		Only one person other thes rider and observed with- in ISm of whick wicrophone
•			Janbian ti Cound matt ba de Taens 18 d8 balan varieta sourna lavat	15 meters from safutes at a 150 angle from plane of metercysie		Engine in new trai at 50% of annimum rated rpm			Dely one person acter the riar and obterval with- in 15m of venicle algrownome
		······································		50° «1° from cun» terrifing of tano or, travel	Alerachene or SLA on tripod aleve ec microphyne point. 4' 44' serve rome- wep surface	l	Lowist jear sa thet vehicle reast min, rep 46 < 30 mph, Inroctis /ully reasts	Marmai tang, (anginu), Na anardeten yang	Techniales and driver, no bystand- er within 50' af aldrophene ar vehi- ste
	_	******		251 vái fran ruar ar either side af vanisia	Position is at nex. in 2.5' above the ground or ori- mtation as per texts.	Open threttle to reach man, recom, rep ar man, governed rea			
			Annient tannet an graatur thes was hidle stang	10 ⁴ -50 ³ . Use spherical spheric (np les to normer (fan to cum				Ma sun, aquip mant queracing. Oltangaga fan if pattible	driver, no mere then the lacasi- ciana

γγγ. - Για το πολογιατικο το προγραφικό το προγραφικό το πολογια το πολογια το πολογια το πολογια το πολογια το πολ - Για το προγραφικό το πολογια το

,

DECT CODY AVA

IGH PHENT

	TEASURENENT METHOD		lound Level Neter	Histophone	Calibration Procedure	Acoustical Equinance	athar Equipment	Sampled fest or in-Situ Situ/Description festrictions	Criteria/ Corrections
	Florida - Highney Yehicia Test Pro- cutura	14-5154	Type 1.2. or S2A musting applicable AMSI speci- ficesions		End-so-ved with a wini- men of svery 2 hours	V[ndscrean (opt.)		 a) Scondard Site - no reflecting surface within 100° al micro- phone or microphone point, b) Rescricted Site 	Vind Yalasit must be < 13 mph
	•				Annual Tab. Sailbration				
	Florida + Hee Yehicie Test Protedure	115 1211	Pruejsion SLA as por AISI suesifi- cations		Calibration bafore and after each use or every 2 hours as a minimum if Instrument is	VInéscreen	Tachtmeter Anuncuster	flat Aeromata. Na reflecting sur- face within 100° of ad alcronnone b) point 50° before elcronnone point, c) point 50° beyond elcro- phane point. Ground Surfece. Smoth aspeelt or	ulmu vajansit 4 12 mpri
					used * 2 hours			concrust in A area between alord- phone and num 50° paines.	
	Himmespeilt,timn Higamay Yenicle Taut Protestice	nu-11	Any sound Javud macar Na Scandard	Any mistor phone So Standard		Vinescraan "Salaan appropriated	4	Comprese of asomete rondmay surfac dry and free of butters or cricks.	•:
	Chicago, ill Agu Abtar Yehicig Auise Andsuranunt	7257 4176	As per SAE JISA smeci- flencions	As par IAE JI84 speci- fleggions	As pur SAC JIBA speci- ficesions. End to end and to bur Interveis.			Adomai concrete or asphait; na re- flective surfaces within 100° ef alcrochnues or 100° af canterlinu of vehicle path from throttle open to throttle cipsed point, ground clear of tambing wetar.	Vina spand < 12 opti
	Chicago, 121 Masor Yahigis Operation Agise Masserment	N113-41	As per SAE JISA specir ficetione	An per JAE JIGA saunt- ffcations	As per SAE J109 speci- fications, End to end and 3 bear			Preferred location 100° cinar area around microshone and microshone pales. Surface of ground normal, highway withdat weter.	
	Zarrington, III Yonicto misa Enforgament Procesure	11-11-11	As per SAC	As par SAE	Before and after each Last or - avary 2 hours as minimum	As por SAE		Alement - aj Stamuard Stat Mo reflecting surfaces within 100° realius of microphone and aicra- porme points bi Assiricted Ita; Aeffecting surfaces within 100°; Alf Sitest Compress or asphat matumeta or overpases; no re- flecting surfaces within 10°.	Ulined Veliceit < 2 mant
-	LA Praft Polor	111110	Type SIA		Calibration	VINESCIER	I	Level, fist and of comprate or	Wind there
	Procedure	11177	1.6 -1991		MC4514/7	cimes	Adverter Adverter Adverter Adverter Adverter 1 102 at 20	ing surfaces within JGo ja of algroundre und vehicle pach	
•	CFA Orafs Adcara craid Adian Calasion Fast	L CHANT	7ypa 51A 247 AKSL 1.4 -1971	······	Calibration Liac mine as necessary	Vindscreen used at eil time	Technicr Hith I JR HEURARY	flat ours size from of refireting surfaces within 16m of metarcycle and microphone	eina velnaity 19 km/hr.
_	Procedul4	1					Annuauter acturacy of 1 102 at 20 Sweby		
	Grugan – Kan Yahigia Sant Procesturn	1113 1111	Type (1 Minimum AKSI 57-5 -1978		Lah. Calibra ricm annually	vindscreen oet (and) reconser	tting astenrounter wind geune Udta forme	Flat sphalt or tonerate surface. no reflecting surface within al 100'nf aicrogenme, al 50' before ascronnume point, cl 50' beyond aicrogenma point	vina valosita t 10 aug
	Gronus - Station Jry Test Proce- dure	STATIENAN			Calibration each time used, tearly lag calibra- tion	Windsernen used	Stendard form	Pres of sound reflecting objects within 50° of microgamme and 50° of venicle	Vind 4 10 mm Rain clannt be failing, Growne can be wet.
التعيير	Uragan - Highmar Baisa Pracsaura	1116-111	7γρ0 [] Minimum Awgj* Σ_14=ig71	fand con Inel dence Ri crosnana	Calibrated pelor to dech usat yeerty lab, calibra- tion	Stodscreen	Data forms; cJipknardt trippt; wind meter; psv- chrometer	nighman - a) Scandard Siter Ho re- Flexting surfaces within 100' re- dus of a isrongong and microphone point; a) Antricted Siter Ag- flexting surfaces within 100'; All Siter Condrate of semealt; no tunnels or graphesest; no re- flexting surfaces within 10'.	Adm. aind Inwed 10 mm. Aiwayy usa ministreen. Ag ruin dr Incm.
					1:	370			
_			······						

הניניי יוייי

EQUIPMENT

	VENICLE) MOTORCTC	L(5							
•	FEASURENERT FETHOR	-	Sound Level	Alsran	Calibrator/ Calibration Proceeding	Gimr Acousticai Employme	Other Lasjoner	Soncial Test or In-Situ Situ/Gestription Asscrictions	Pataerslayli Criterlad Correctine
	Hansil - Yekisia Tajiga jar Qaha - Dapartuma af	11-4170	na spozi+ flestions	HO LENGI- Ficalians	Cullbrazor magging All31 St. 4-1971	Vindueroon "When Appender in Ead	·• · · ·	Bry radmay, Gry radmay, Gampets or schult, ma lorne material.	
	Matendajitan Vastington		Тури 2						
	Grand Rapids Al chigan	STATIONALY	Type 2 46 per A191 51, k=1971		Callbrarmi immediaculy efter man surmmer of a vidiacion		Angenprinting Tachumater Data Form	Nord, dry suchas of criterosa or seoled asonait	No rain de stou
·•• • ••	SAE 107 - Fia (man forma (avos Potann Lia) foo Recentyalos		[γgm] φ¢ 37Α πασα− [πημ ΑΝ34 33.4+1931		Callbratud atturdty 		Option to tion record moise, Sys- tum should more SAC Jida Tachnowter Vingeroon	Surface of ground within A formed by nicrogenese + 2 30° paints, must be dry and frad of some sail-and attempts massfield,	

137D

. . .

DEPT NORV 41/44 454 7

.

.

.

コンシー シンフィ

I.

.

Figure 11<u>.1</u> Motorcycle Noise Measurement ____(Con't)

.

-CASUAGHENT

1		Quencity Committee Experted	Statisticsi Massurance	dater lemoned	.te/aroman	debue Comments		
	Arnat, Ly fast spanne antiquet parad							
	A-ort, Fast	Angropa af cua try ta With 24 of cust					-	
	nen leveri of ashanst side af vasicie	ether				A		
	restance sis cross per side of reliate mations langt	within 2db within 2db Highwax of two siders) is reported	.*			(e#E	**	
							· _	
			•'					
						• ,		
							•	
	,							
				137F				
				44,44 F #			an and an and a second second	

11.2 MOTORCYCLES: PASSBY MEASUREMENT PROCEDURES

11.2.1 PURPOSE

A method for obtaining sound level measurements of motorcycles operating on thoroughfares is described below. It is difficult to control site conditions which affect the accuracy of sound level measurements at a road measurement site. If the preferred measurement site cannot be attained, adjustments to sound level measurements may be necessary. These adjustments are discussed in Section 2.3.

÷

e

11.2.2 INSTRUMENTATION

The instrumentation necessary for the procedures includes a Type 2 (or better) sound level meter (per ANSI S1.4-1971 specifications); a sound level meter calibrator accurate to $\pm .5$ decibel; an anemometer (wind speed indicator) accurate to ± 10 % at 20 km/hr; and a windscreen recommended by the microphone manufacturer. The windscreen shall be used at all times. Use of a windscreen reduces the influence of wind induced noise at the microphone.

The entire sound level measurement system shall be checked annually by its manufacturer or a certified laboratory for accuracy.

11.2.3 PERSONNEL

Persons responsible for conducting sound level measurements should be trained in the operation of sound level meters and familiar with the test procedure and corrections which may have to be applied.

11.2.4 MEASUREMENT SITE

The preferred site used for measurements shall be flat, open and free of reflecting surfaces such as parked vehicles, signboards, buildings, or hillsides, within a 30 meter (98.5 ft.) radius of the microphone and a 30 meter (98.5 ft.) radius of a passing automobile (see Figure 1) at the lane of traffic closest to the microphone. Sites may be prequalified at various locations in a community.

H-

For those sites which do not meet the above specifications, adjustments to the measured noise level values are required. These adjustments are discussed in Section 2.3.

Within the area specified above, the traffic lane shall be a straight run. The surface of the ground in the measurement area shall be hard, dry, and free from snow, standing water, soil, or other extraneous material.

11.2.5 VEHICLE OPERATION

Vehicles are observed during normal roadway operation. When measuring the noise level of a given vehicle, other vehicles on the same roadway should be outside of the measurement area shown in Figure 1.

11.2.6 MEASUREMENT PROCEDURE

Mount the microphone (or sound level meter/ microphone combination) on a tripod at a height of 1.2 meters (4 ft.) ± 8 cm (± 3 in.) above the ground. Locate the microphone at a distance of 15 meters (50 ft.) from the centerline of the lane of traffic. If the microphone cannot be located

139

and the second
15 meters (50 ft.) from the traffic lane, adjustments are then made to the sound level measurements to correct them to the standard distance. The adjustments are discussed in Section 2.3. The microphone should be oriented per manufacturer's specifications.

Ę

Set the sound level meter to "fast" response and A-weighting. Observe the meter as the vehicle passes the microphone. Note the highest observed sound level on a data sheet (Figure 2).

Measurements shall be made only when the A-weighted sound level, including noise from wind and sources other than the vehicle being measured, is at least 10 decibels lower than the sound level of the vehicle. Background ambient sound level measurements shall be made immediately before and after measurements or at regular intervals not to exceed 10 minutes.

Measurements shall not be made when it is raining or snowing, or when wind speed exceeds 20 km/hr (12 mph).

Measurements shall not be made during environmental conditions (temperature, humidity) which the instrument manufacturer deems unacceptable.

An external calibration of the sound level meter shall be made at regular intervals not to exceed two hours. If the calibration differs by more than one decibel, measurements taken between calibrations shall not be considered valid and the sound level meter shall be adjusted.

140

and the second
コインナ ンンジン・・・

BLACK COPY

FIGURE 2. EXAMPLE: VEHICLE HOISE MEASUREMENT REPORT FORM

Examiner:		Date:	Tiwe:
Vehlela:		_ Teat Type:	·
Vehicle Haket	Vehicle Type:	License;	Model:Year
Registered Owners		Address:	·····
Operator 1	l.lcense	f:Address:	
Sound Lovet Heter Hanuf: Type: Sertal D:	<u> </u>	librator Manuf; Type: Serial #:	Hlero, Manuf ; Type : Serial #:
Herey Check () Batt, () Window	creen O"A" 6	leighting O Faat Response O Slow	Calibration Prefestdu Postfestdu
General Weather Teat Conditions Conditions	Ľ	Wind Speed	m/sec
Test No. Heasurement Location	r ^b * qu	Sketch of	Test Site
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
	-		
	-[]		
	-		
· · · · · · · · · · · · · · · · · · ·		If prequalified site, i designation	ndicato site -

•

ومحاومهما ومحارك المحارث والمستحار والمترك فالمحارث والمراجع والمترك والمتحال والمحارك والمحاوية والمحاوي فالمحار والمعاومة والمعاومة والمعاوية والمع

and the second

الحاج هرداجوا بالماهم الماريس الماليون الاعاد

142

The second second

مااند

MOTORCYCLES

un di wa 7

11.0 MOTORCYCLES

11.1 INTRODUCTION

Two motorcycle noise measurement methods are presented in support of Article IX, Section 9.1 <u>Motor Vehicles and Motorcycles on Public Rights-of-Way</u> of the Model Community Noise Control Ordinance, a passby test procedure and a stationary procedure. A stationary motorcycle noise regulation is not provided in Article IX, Section 9.1, but an applicable enforcement method is presented here for communities desiring to adopt this type of regulation.

These methods were selected after a thorough review and analysis of current available sound level test procedures for motorcycles. Figure 11.1 presents the evaluation matrix used in selecting these methods. In addition, test methods for automobiles (Figure 5.1) were also reviewed.

Although many motorcycles come equipped with tachometers, an external tachometer may be necessary for those vehicles not so equipped. Since the number of cylinders and firing arrangements may differ from motorcycle to motorcycle, care must be taken in correctly wiring and interpreting the indications of an external tachometer. A local automotive supply house or motorcycle shop can supply guidance in purchasing an external tachometer. Due to the large variation in motorcycle engine size and operating characteristics, no one engine speed can be specified for the stationary measurement method. Fifty percent of the speed at maximum rated horsepower is suggested as the best speed to be used.

143 A

11.2 MOTORCYCLES: PASSEY MEASUREMENT PROCEDURES

11.2.1 PURPOSE

A method for obtaining sound level measurements of motorcycles operating on thoroughfares is described below. It is difficult to control site conditions which affect the accuracy of sound level measurements at a road measurement site. If the preferred measurement site cannot be attained, adjustments to sound level measurements may be necessary. These adjustments are discussed in Section 2.3.

11.2.2 INSTRUMENTATION

The instrumentation necessary for the procedures includes a Type 2 (or better) sound level meter (per ANSI S1.4-1971 specifications); a sound level meter calibrator accurate to ±.5 decibel; an anemometer (wind speed indicator) accurate to ±10% at 20 km/hr; and a windscreen recommended by the microphone manufacturer. The windscreen shall be used at all times. Use of a windscreen reduces the influence of wind induced noise at the microphone.

The entire sound level measurement system shall be checked annually by its manufacturer or a certified laboratory for accuracy.

11.2.3 PERSONNEL

DECT CORV AVAN AN

1

Persons responsible for conducting sound level measurements should be trained in the operation of sound level meters and familiar with the test procedure and corrections which may have to be applied.

and an end of the second s

143 B

11.2.4 MEASUREMENT SITE

The preferred site used for measurements shall be flat, open and free of reflecting surfaces such as parked vehicles, signboards, buildings, or hillsides, within a 30 meter (98.5 ft.) radius of the microphone and a 30 meter (98.5 ft.) radius of a passing automobile (see Figure 1) at the lane of traffic closest to the microphone. Sites may be prequalified at various locations in a community.

For those sites which do not meet the above specifications, adjustments to the measured noise level values are required. These adjustments are discussed in Section 2.3.

Within the area specified above, the traffic lane shall be a straight run. The surface of the ground in the measurement area shall be hard, dry, and free from snow, standing water, soil, or other extraneous material.

11.2.5 VEHICLE OPERATION

Vehicles are observed during normal roadway operation. When measuring the noise level of a given vehicle, other vehicles on the same roadway should be outside of the measurement area shown in Figure 1.

11.2.6 MEASUREMENT PROCEDURE

Mount the microphone (or sound level meter/ microphone combination) on a tripod at a height of 1.2 meters (4 ft.) ±8 cm (±3 in.) above the ground. Locate the microphone at a distance of 15 meters (50 ft.) from the centerline of the lane of traffic. If the microphone cannot be located

143 C

15 meters (50 ft.) from the traffic lane, adjustments are then made to the sound level measurements to correct them to the standard distance. The adjustments are discussed in Section 2.3. The microphone should be oriented per manufacturer's specifications.

Set the sound level meter to "fast" response and A-weighting. Observe the meter as the vehicle passes the microphone. Note the highest observed sound level on a data sheet (Figure 2).

Measurements shall be made only when the A-weighted sound level, including noise from wind and sources other than the vehicle being measured, is at least 10 decibels lower than the sound level of the vehicle. Background ambient sound level measurements shall be made immediately before and after measurements or at regular intervals not to exceed 10 minutes.

Measurements shall not be made when it is raining or snowing, or when wind speed exceeds 20 km/hr (12 mph).

Measurements shall not be made during environmental conditions (temperature, humidity) which the instrument manufacturer deems unacceptable.

An external calibration of the sound level meter shall be made at regular intervals not to exceed two hours. If the calibration differs by more than one decibel, measurements taken between calibrations shall not be considered valid and the sound level meter shall be adjusted.

143 D

DEPT YORK ALLE

11.3 MOTORCYCLES: STATIONARY TEST

11.3.1 PURPOSE

The purpose of this motorcycle stationary noise test procedure is to provide a method which is repeatable and defensible. The stationary test can be accomplished at a preferred test site under desired operating conditions.

11.3.2 INSTRUMENTATION

A Type 2 (or better) sound level meter (per ANSI S1.4-1971 specifications); a sound level meter calibrator accurate to ±.5 decibel; an anemometer (wind speed indicator) accurate to ±10% at 20 km/hr; an engine speed tachometer*accurate to ±5% at full scale; and a windscreen recommended by the microphone manufacturer are required. The windscreen shall be used at all times. Use of a windscreen reduces the influence of wind induced noise at the microphone.

The sound level measurement system shall be checked annually by its manufacturer or a certified laboratory to verify its accuracy.

11.3.3 PERSONNEL

Persons responsible for conducting sound level measurement tests should be trained in the operation of sound level meters and familiar with this test procedure.

*The tachometer is used if the motorcycle does not have its own tachometer. See Section 3.7 for discussion of tachometers.

143 D

11.3.4 TEST SITE

The site shall be flat, open and free of reflecting surfaces, such as parked vehicles, signboards, buildings, or hillsides, within 7 meters (23 ft.) of the vehicle. An empty portion of a parking lot is satisfactory.

11.3.5 VEHICLE OPEL TION

The engine shall be at normal running temperature with the transmission in neutral. If the motorcycle does not have a neutral position for the transmission, the rear wheel shall be supported on a stand allowing it to spin freely while the engine operates. The rider shall sit astride the motorcycle in normal riding position. Sound level measurements are made at an average steady-state engine speed equal to 50% of maximum rated engine speed.

11.3.6 TEST PROCEDURE

DEDT 2025 ANA ---

i

Set the sound level meter on A-weighting, "fast" response. Place the microphone or microphone/sound level meter combination on a tripod at the same height above the ground as the motorcycle exhaust outlet. The microphone shall be positioned with its longitudinal axis parallel to the ground 500 mm (20 in.) from the edge of the exhaust outlet, and 45 =10 degrees from the axis of the outlet (see Figure 1).

Observe the sound level meter as the motorcycle operates as described in Section 11.3.5. For vehicles with multiple exhausts, the measurements shall be repeated at each exhaust outlet and all results reported on the data sheet. The

. . .

المحمد المربوع المحمد المح المحمد

FIGURE 2. EXAMPLE: VEHICLE NOISE MEASUREMENT REPORT FORM

ى ئەركىرىنى بۇيۇرى ئۇرىڭ يەركەردى <u>ئەردە بەركەر ئەردە</u> ئەتلەرلە ئەركەردە يەركەردىيە تەركەر تەركەر تەركەردە تەركەر

ה ובעל עסטע איזאון איזי

Examiner:		Date:	Tim	e;
Vehicle:	Test T	/pe:		
Vehicle Nake: Vehic	le Type:	_license:	Model;	Year
Registered Owner:	Address	1:		
Operator:	_License #:	Address:		·····
Sound Level Meter Manuf: Type: Sertal #:	Calibrator b	tanuf : Type : a1_# :	Micro, Mam Tyj Serial	d:
Neter Check CHatt, CWIndscreen	O"A" Weighting	CI Fast Response CI Slow	Calibration	Pretestdb Posttestdb
General Weather Teat Conditions Conditions	Wind	Speed	n/sec	
Measurement Engine Test No. Location Speed (rpm) ^L p.	dB	Sketch of 5	lest Sire	
	If pi des L	equalified site, in gnation	ndicate site	

11.4 BIBLIOGRAPHY

2

םבטין טטעה

AUAII 171 1

Barrington, City of, "Vehicle Noise Enforcement Procedures, City Code No. 14 (Barrington, Ill.).

Bolt, Beranek and Newman Inc., "Chicago Urban Noise Study," BBN Report 1411, Nov. 1970 (Chicago, Ill.).

California, State of, "California Vehicle Code: 1973," Section 27160 (Sacramento, California).

Council of Governments: Metropolitan Washington D. C. "Areawide Noise Measurement Procedures Manual."

Florida, State of, "Highway Vehicle Test Procedures," Dept. of Pollution Control, Supp. No. 50, Chapter 17-18, Vehicle Sound Measurement.

Grand Rapids, City of, "Stationary Motor Vehicle Tests," Chapter 151 Title IX of City Code (Grand Rapids, Mich.).

Minneapolis, City of, "Noise Code: Chapter 389," Pollution Control Division, Highway Vehicle Test Procedures (Minneapolis, Minn.).

Oahu, City of, "Community Noise Control for Oahu," Dept. of Health, State of Hawaii, Chapter 44B (Oahu, Hawaii).

Oregon, State of, "Motor Vehicle Sound Measurement Procedures Manual," Dept. of Environmental Quality, Doc. NPCS-21.

Society of Automotive Engineers, "Sound Level for Passenger Cars and Light Trucks," SAE J986A (1972).

Society of Automotive Engineers, "Maximum Sound Level Potential for Motorcycles," SAE J47 (1975).

U.S. Environmental Protection Agency, "Draft Motorcycle Noise Emission Test Procedure," 1977.

147

.

12.0 POWERED MODEL VEHICLES

12.1 INTRODUCTION

Model airplanes, boats or cars, powered by small onecylinder "glow plug" gasoline engines are often annoying community noise sources. Article VI, Section 6.2.11 of the Model Community Noise Control Ordinance considers the noise from powered model vehicles as a prohibited act.

Discussions with numerous local enforcement officials indicated that, in the few cases where citations were issued, the citations were based on noise measurements made at the nearest residential property or noise sensitive land use. No standard measurement procedures were reported by these officials.

Most models are very small noise sources and can be measured in a stationary mode at one meter from the test model. This measurement procedure allows the test to be performed at or near recreational areas where the models can be tested with minimum noise interference from other nearby noise sources. The data obtained from this test method can be used to extrapolate the noise from the model (in flight, for example) to noise sensitive land uses or the recreational area boundaries.

المحلول التي الرواد المراجع المحلول المحلول المحلوم المحلم المحلة المحلة المحلة المحلة المحلة المحلة المحلة ال المحلول
ひにやす ヘヘカビ

12.2 POWERED MODEL VEELCLES

12.2.1 PURPOSE

This test procedure provides for a method of measuring the noise of powered model vehicles whose engines typically operate continuously at full throttle. A stationary full throttle test procedure is described.

12.2.2 INSTRUMENTATION

A Type 2 (or better) sound level meter (per ANSI S1.4-1971 specifications); a sound level meter calibrator accurate to 1.5 decibel; an anemometer (wind speed indicator) accurate to 10% at 20 km/hr; and a windscreen recommended by the microphone manufacturer are required. The windscreen shall be used at all times. Use of a windscreen reduces the influence of wind induced noise at the microphone.

The sound level measurement system shall be checked annually by the manufacturer or a certified laboratory to verify its accuracy.

12.2.3 PERSONNEL

Persons responsible for conducting sound level measurement tests should be trained in the operation of sound level meters and familiar with this test procedure. An individual is required to hold the vehicle if it cannot be secured to a test stand.

an an an the second
12.2.4 TEST SITE

The site shall be flat, open and free of reflecting surfaces, such as parked vehicles, signboards, buildings, or hillsides, within 5 meters (15 ft.) of the model. An empty portion of a parking lot may be satisfactory.

12.2.5 POWERED MODEL VEHICLE OPERATION

The vehicle shall be stationary and secured to a test stand or held so that the model is at the same height as the microphone. A test stand might be constructed by securing a platform of quarter-inch plywood, .5 meter (20 in.) square, on a photography tripod. If held, every effort shall be made to minimize the effect of the holder on the measurements. The holder shall not be in the direct line passing through the microphone and model. The engine shall be run at maximum speed.

12.2.6 MEASUREMENT PROCEDURE

į

Set the sound level meter/microphone on a tripod at a height of 1.2 meters (4 ft.) ±8 cm (±3 in.). The microphone shall be located 1 meter (3.3 ft.) ±8 cm (±3 in.) from the model. Set the sound level meter on "fast" response and A-weighting. Observe the sound level meter for 30 seconds while the model operates at full throttle. Note the maximum sound level observed.

Measurements are valid when the background ambient A-weighted sound levels, including noise from wind and sources other than the model under test, are at least 10 decibels lower

and the second
than the noise from the model under test. Observe the background ambient sound level before and after each test.

Note model description, noise measurement results, and other pertinent data on a data sheet. (Figure 2 contains a suggested format.)

Measurements shall not be made when the wind speed exceeds 19 km/hr (12 mph) or when it is raining or snowing.

Measurements shall not be made during environmental conditions (temperature, humidity) which the instrument manufacturer deems unacceptable.

An external calibration of the sound level meter shall be made before and after each series of measurements. If the calibrations differ by more than one decibel, the measurements shall be repeated after the sound level meter is adjusted.

ودارون والمراج الأراو متعاقب ستناسب

FIGURE 2. EXAMPLE: VEHICLE NOISE MEASUREMENT REPORT FORM

Examiner:	Date	*:'fime;
Vehicle:	Test Type:	
Owner:	Address:	
Sound Level Meter Manuf: Type: Serial #:	Calibrator Manuf: Type: SerJal #:	Hlcro, Manuf ; Type ; Serial # ;
Meter Check O Batt, O Windscreen	O "A" Weighting O Fast Response O Slow	Calibration Protestd Posttestd
General Weather Test Conditions Conditions	Wind Speed	m/8ec
Test No. Measurement Location Lp. c	IN Sketch of t	fest Site
		{
		ndicate site

111111100

12.3 BIBLIOGRAPHY

ロロウゴ つつつく ムンチン

2

1

Bolt, Beranek and Newman Inc., "Chicago Urban Noise Study: Noise in the Urban Environment," 1970.

;

٩.

ŗ

المسلح المحمد المراجع المراجع المراجع المراجع المراجع المراجع المراجع المحمد المحمد المحمد المحمد المراجع المر المراجع المحمد المحمد المراجع المراجع المراجع المراجع المراجع المراجع المراجع المحمد المحمد المحمد المحمد المراجع

Council of Governments: Metropolitan Washington, D. C. "Areawide Noise Measurement Procedures Manual."

13.0 RECREATIONAL VEHICLES

13.1 INTRODUCTION

and a second second second second

טבפד החחנ

AVIAN

Recreational vehicles (off-road motorbikes, go carts, snowmobiles, dune buggies, and others) are often powered by small, air cooled 2 or 4 stroke engines. Because of space, weight and power limitations, the mufflers used on these vehicles are often very simple, no more than spark arrestors. Since the vehicles are not registered for street use, they are often modified or improperly maintained. The Model Community Noise Control Ordinance considers the noise from these vehicles in Article IX, Section 9.2,

Numerous noise measurement procedures were reviewed and evaluated, Figure 13.1. Some of these test procedures incorporate an acceleration test. These tests are complex, require a large test space and can be dangerous to the vehicle and its operator. Since exhaust noise is the dominant vehicle noise, a stationary procedure, requiring measurements at .5 meter (20 in.) from the vehicle's exhaust outlet, is provided. The stationary measurement method provides repeatable and defensible results. It allows the test to be performed at a preferred test site under desired operating conditions.

15810	LE: RECREATIONAL				EQUIPMENT				
	ASUAEAENT RETHOD	1157 TYPE	Sound Level Metter	n i cròphone minimi	Calibrator/ Calibration Procedure	Other Acousticai Equipment	Other Equipment	Special Tast or in-Situ Site/Description Asstrictions	Mateorolog Criteria/ Correction
Penas af Sna	vivania-Jedt. Envir. Control Namodilas	1111 JUL	Per SA	E J(16)					
5.2.5 1:0 "ee Sna	, jiléi-Caara naj joung lavel a. 2706. ungélas	1115 1511	Prveision Type i ARSi *.	Ţ	Accoustic Callb.20.548 Fisid Call- Yrstion and=to=end	Vindscraat	Aag, Taon Ameeredat Galig, Yan, Sonos Indicating System Theremeter, Barcomster, Arankonster, aimtvong,	Leval commerce of large reflecting surfaces	Vanicie pat coverad can lodig inde o base of fir inde lacgrei atmos tamo, prasis humidity, u toest 5 dre ic lacat eve hour, dina i kure 93-103
Gran Ye	a tapias, rich. n varicia test	\$14] tuuxay	Type 2 SLN ARS1 ST, 4=1971		Calibrated st 1000 HR at start and end of each teat taries. Annual calibra- tion of calibrator.	Vindscrupn uith lass then t.5 dB effect ch system cur- sitivity	Ananyan tar with fill accuracy, Taknomtor 223 accur rmtv, Data sheats.		Vinst velocit ≺iz man No rain gr insta
:113	ineis-€.P.Anme micte	1115 1531	Par S	5AE J1161				<u></u>	
inir	naapütte, sien.	111-11	Any sound Toyos Ancer No scandard	Any alcram phane As scandard	•	Vindssrown "Snan sparoprädze"	4	amerate or espheit roadway surface ry and free of bumps or cracks.	2 2
Chica ion	ga. Iltingis-Hee icle mite mess.	112 121	As per SAE Jidb specifica- Lions	As per SAE JIBh Soegifics- Elons	artarmal and torend flaid calib, baform & after asch tast & every y nr. in use			Lavel osen-End ac.50° Devone Aleroamone St. Vegetation - 3° tail Systaneers 50° amey	¥ind spara ≺ I2 mpn
ירפיסי יוריזי וריזי	ùast, of Frr mantai Quality - usiiss-¶aka	1144 4231	Type II Alainna Anti Si.4-1971		Lab., Cali- bracion annually	Vindscresn og tional facorder	Sling payn chronmtar; wing gauye; uwta form	jCG' venícle jach ICG' radius, clear.	Vind Jaiggity «IQ mon
٠									

•

•••

میلند. منابعه او ما	La comuna d	ni grannan				TINICLE OFCAAT	<u>174</u>	
Surfaces/ Criteria/ Corteria/	Ampiant foise Critaria Corrections	Soursa 213canca/ Carrection	Alcroename Orientation/ nyvenent	Stationery Engline Journation	Passby/ <u>Operacian</u>	Auni I lary Equipment Descation	Parpanna i Raqui rad	Sound Guanzity Maasurad
At least 100* from cest path	At impet iCið Janur than yunidin tust	50° francess Ifne of vehicle pact + across surfate			Constant Spead" 1327 men e J' varianse from conterling		nst wire then 1 persons. 50° of venicle path Tech. Stained 2 auderlenced in tests.	' Amut, sicu response- Record hig st meter reading of run,
No reflecting surfaces, 30° in from Land behind elero- spons point, 331 "above" and "belor" ant response	At least 8 dé bejou vahicle ngiou chart for cerrention]5' from ve- hiele path camtarline	4.5' papes ground lavel - J.5' to 6' abovs rose surface, priestne as per instructions	Abb gareerne speed with wide open throatls, lucah en- gaped, gas- ja neutrol		Ng Asa, aquigmant opgrafing. Jisan- gaqafian if pepsibia	Oriver, no agra than the teensiteians	Ran, Arut artraga af randings
No reflecting suffetes, 100 ⁴	Ambiant - vanigia - ambiant - Juli IQ di balan ya- higin sama lavai	Maise Jewei criteria given at 20', 25' and 50' 50' zj' from centerline af vehicie travel	Algraphame on 60° ass. cable on tri- ped. 4° tj° andre		Bifferent limits for >35 mm ami <35 mm full threttle esspiration fro stanting start.		Trained and quall- flat in sound most, cachnidum & equip.	Ames, fasson as respons source rand
		50° EL' fran cantarilne af jane ar travei	Altrophene of SLA o tripod almod at aic phone paint. It i phone paint. It is	- ro- i i i i i i i i i i i	Standing start- transing start- trans, ion gear ride open throte to mea, rom thro enda, rom thro enda, starthro end st.	;;;;;	Technician ang driver, No ky- scander wichin 50° of aicroshong or vahicia,	Gurling run Anne Ly response
·								

פרפד החתע אנואון אחו ה

· · ·

			Figu	ге 13.1	Recreational Ve Noise Measureme	hicle nts			
		Sound Quanti ty Reported	Assignment Statisticai <u>Aresignment</u> as	Other 2818, Memorial	teferances	Sther Commerce			
	-		Lanait (sot ruis until 3 readings ulthin 245 per side, Average ach Side-Report highest side		268 teleranca over sound limit allowed.				
	-		Anatore an bach sides of yer hicles with maitipin an heats werit 2 within 2 de ore anhuman				,		
	-				-				
	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··		At jastt å raad- ings en besin side of venicia Armetet act side å redert jandett side så final ræde- ing						· -
		Avaraga of two highest raddings —ithin 7 di of each ather on each sida	t runs/side of vehicles			2 aB graca ior variation in equipment and test site. Optional decoloration noise			
		•			156C				
· · ·	and the second se	and the second of the second o	ormania Nation Principa	lates and de	entella anti devente a na	ta a mana ta ta are	talah karang karang sang karang sang sang sang sang karang sang karang sang sang sang sang sang sang sang s	ىيى ئۇر بارى روپى ئەرىيىتىن ئەركىي	etti ayala Maray kang
• • •	· · · - · .								

•

13.2 RECREATION VEHICLES

13.2.1 PURPOSE

Recreation vehicles is a general term, used in this context to describe off the road, unlicensed vehicles. Included in this category are go carts, minibikes, motocross motorcycles, snowmobiles, and dune buggies. The described measurement procedure is applicable to all these vehicles.* Snowmobiles may be tested on snow or grass, while the other vehicles shall be tested on a dry, sealed concrete or asphalt surface.

13.2.2 INSTRUMENTATION

A Type 2 (or better) sound level meter (per ANSI S1.4-1971 specifications); a sound level meter calibrator accurate to ±.5 decibel; an anemometer (wind speed indicator) accurate to ±10% at 20 km/hr; an engine speed tachomter^{**} accurate to ±5% of full scale deflection; and a windscreen recommended by the microphone manufacturer are required. The windscreen shall be used at all times. Use of a windscreen reduces the influence of wind induced noise at the microphone.

The sound level measurement system shall be checked annually by its manufacturer or a certified laboratory to verify its accuracy.

*In some cases, the vehicle might be licensed for use on public roads. In these cases, procedures for motorcycles and automobiles are applicable.

**Used if the vehicle does not have its own tachometer. See Section 3.7 for a discussion of tachometers.

157

مجمع المراجع ا المراجع
13.2.3 PERSONNEL

Persons responsible for conducting sound level measurement tests should be trained in the operation of sound level meters and familiar with this test procedure.

13.2.4 TEST SITE

The site shall be flat, open and free of reflecting surfaces, such as parked vehicles, signboards, buildings, or hillsides, within 7 meters (23 ft.) of the vehicle. An empty portion of a parking lot may be satisfactory. Snowmobiles shall be tested on grass or snow. In this case, an empty field is acceptable.

13.2.5 VEHICLE OPERATION

The engine shall be at normal running temperature with the transmission in neutral or park. Those vehicles which do not have a neutral gear (e.g., snowmobiles) shall be placed on a stand so that the treads clear the ground and can rotate freely. Sound level measurements are made at an average steady-state engine speed* equal to the governed engine speed, 50% of rpm at rated horsepower, or if the figures are not available, 3500 rpm for engines less than 950 cc displacement and 2800 rpm for engines greater than 950 cc

13.2.6 MEASUREMENT PROCEDURE

Å

Set the sound level meter on A-weighting, "fast" response. Place the microphone on a tripod at the same height

ara a bara an an an air air a tha an an an a' ann airtean an a' an a' an a' an an ann an an an an an an an ann a An an an an an

^{*}Note: Different off road vehicles have different engine firing arrangements. If an external tachometer is used to monitor engine speed, care should be taken to ensure that the tachometer is read correctly.

above the ground as the vehicle's exhaust (see Figure 1). The microphone shall be positioned with its longitudinal axis parallel to the ground 500 mm (20 in.) from the edge of the exhaust outlet and 45 ±10 degrees from the axis of the outlet. If the exhaust outlet is located 300 mm (12 in.) or more inboard from the vehicle body, the microphone shall be located 200 mm (8 in.) from the vehicle body at the specified angle. Observe the sound level meter while the vehicle is operated as described in Section 13.2.5. Measurements are valid when the background ambient A-weighted sound levels, including noise from wind and sources other than the vehicle under test, are at least 10 decibels lower than the noise from the vehicle under test. Observe the background ambient sound level before and after each test.

Measurements shall not be made when the wind speed exceeds 20 km/hr (12 mph) or when it is raining or snowing.

Measurements shall not be made during environmental conditions (temperature, humidity) which the instrument manufacturer deems unacceptable.

An external calibration of the sound level meter shall be made before and after each series of measurements. If the calibrations differ by more than one decibel, the measurements shall be repeated after the sound level meter is adjusted.

The following photograph shows a noise measurement of a snowmobile being made.

161

and the second
DTOT 2225 AUX - ----

FTGURE 2. EXAMPLE: VEHICLE HOTSE MEASUREMENT REPORT FORM

Examiner:				<u></u>	Dute:	T11	aus ;
Vehlete:	a 199 yılır al-1999 yılının yı devekini yı yıllırın aynı yışıllı			Test (Гура:		
Vahicle +	lake:	······	Vehicle T	ype:	License:	Model:	Year
Registere	d Owner:			Addre	in:		
Operator:			l.fc	епне #:	Addreas:		
Sound Lev	el Meter Hann Typ Serial	f: e: f:		Calibrator Su	Manuf : Yype : 4 a L # :	Nicro. Man Ty Serial	uf: pe: #:
Neter Che	ek (1 Bart.	D Windsci	reen O	"A" Weighting	C Fast Response C Slow	Calibration	Protestdl Posttestdl
Test Cond	fittons Con	ditions		WEnd	Speed	m/sec	
Test No.	Measurement Location	Engine Speed (rpm)	L _р , ав		Sketch of	Test Site	
]	[] [······	······	
	·						
		•					
			_ 				
							{
				If j des.	prequalified site, in the second seco	ndicure site ' -	

والمبتلية فاندها لايدانا كالمحملات وتحليف أستحملهمون والاجمعي وركالا

.

C. N. G. LEW

13.3 BIBLIOGRAPHY

Chicago, City of, "Noise Ordinance," Dept. of Environmental Control, 1971.

Grand Rapids, City of, "New Vehicle Tests," Chapter 151 Title IX of City Code (Grand Rapids, Mich.).

Illinois, State of, "Noise Pollution Control Regulations," Illinois Dept. of Environmental Protection, Chapter 8, Newsletter No. 70, 1973.

Minneapolis, City of, "Noise Code: Chapter 389," Pollution Control Division, Highway Vehicle Test Procedures (Minneapolis, Minn.).

Oregon, State of, "Noise Pollution Control Regulations," Illinois Dept. of Environmental Protection, Chapter 8, Newsletter No. 70, 1973.

Pennsylvania, State of, "Snowmobile Laws, Rules, and Regulations," Dept. of Environmental Resources, Bureau of Forestry (1976).

Society of Automotive Engineers, "Operational Sound Level Measurement Procedure for Snow Vehicles," SAE J1161, Nov. 1976.

المراجع مي المراجع الم المراجع

14.0 REFUSE COLLECTION VEHICLES

14.1 INTRODUCTION

REST CODY AVAILANI T

Article IX, Section 9.1.3 of the Model Community Noise Control Ordinance establishes noise emission guidelines for refuse collection vehicles. These vehicles are heavy trucks with a trash compacting mechanism mounted to the frame. The noise from the compactor is measured in a manner similar to the noise from construction equipment such as air compressors. The proposed procedure requires noise measurements to be made at four locations at right angles to each other around the vehicle, while the vehicle is stationary during a normal compaction cycle. In this way, all the significant noise producing components of the vehicles are considered. Since it would be difficult to standardize the amount of refuse to use during the test, the noise measurements are made with the compactor empty.

A simplified in situ test procedure requiring a single measurement at 7 meters at the side of the vehicle midway between the cab and compactor can be used for screening purposes.

14.2 REFUSE COLLECTION VEHICLES

14.2.1 PURPOSE

Since refuse collection vehicles are basically trucks, truck noise level measurement procedures apply when these vehicles are traveling. The compactor is a significant noise source on these vehicles. Therefore, a separate stationary noise test procedure for compacting operations is described.

14.2.2 INSTRUMENTATION

A Type 2 (or better) sound level meter (per ANSI S1.4-1971 specifications); a sound level meter calibrator accurate to \pm .5 decibel; an anemometer (wind speed indicator) accurate to \pm 10% at 20 km/hr; and a windscreen recommended by the microphone manufacturer are required. The windscreen shall be used at all times. Use of a windscreen reduces the influence of wind induced noise at the microphone.

The entire sound level measurement system shall be checked annually by the manufacturer or a certified laboratory to verify its accuracy.

14.2.3 PERSONNEL

na na sana sana sana sana sana

ロロウギ うつうく

A1/A11

211

Persons responsible for conducting sound level measurement tests should be trained in the operation of sound level meters and familiar with this test procedure.

165

and the second
14.2.4 TEST SITE

The site shall be flat, open and free of reflecting surfaces, such as parked vehicles, signboards, buildings, or hillsides, within 15 meters (50 ft.) of the four microphone locations. An empty portion of a parking lot may be satisfactory.

14.2.5 REFUSE COLLECTION VEHICLE OPERATION

With the vehicle stationary at the test site, cycle the compactor through normal modes of operation. The compactor shall be empty for the test.

14.2.6 MEASUREMENT PROCEDURE

Place the sound level meter/microphone on a tripod at a height of 1.2 meters (4 ft.) ±8 cm (±3 in.). The microphone shall be located 7 meters (23 ft.) ±15 cm (±6 in.) from the side of the vehicle (see Figure 1). Set the sound level meter to "fast" response, and A-weighting. Observe the sound level meter for a complete compacting cycle with the compactor empty. The maximum sound level observed during the compacting cycle shall be noted on a data sheet. (Figure 2 contains a suggested format.)

Measurements are repeated for each of the four sides of the vehicle. All four sound levels recorded are reported.

Measurements are valid when the background ambient A-weighted sound levels, including noise from wind and sources other than the vehicle under test, are at least 10 decibels -

166

والمراجع والمعري تركر والبني والمستعيم ومستعم معتادهم

lower than the noise from the compactor under test. the background ambient sound level before and after 4.

Note compactor model, operating data and noise memory results on a data sheet (Figure 2).

Measurements shall not be made when the wind speed exceeds 20 km/hr (12 mph) or when it is raining or snowing.

Measurements shall not be made duri., g environmental conditions (temperature, humidity) which the instrument manu-facturer deems unacceptable.

An external calibration of the sound level meter shall be made before and after each series of measurements. If the calibrations differ by more than one decibel, the measurements shall be repeated after the sound level meter is adjusted.

The following photograph shows the measurement procedure for a refuse collection vehicle.

- 1984 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994

םבפד רחמע אוואוו אחו ה

1))

مراكبون المراجع والمحادث والمراجع والمحافظ والمحاف

الوارية المراجع والمعجر بالتأريب والرز

....

i

Figure 2: Example: Vehicle Noise Measurement Report Form

Examlaer:		Date;	Tine:
Vehlete:		Test Type:	<u></u>
Vehicle Makes	_ VehJcla Type;	L1 cense :	Hodel:Yenr
Reglatered Owner:		Address:	
Sound Lovel Meter Manuf: Type: Sertal #:	Ca t	lbrator Manuf: Type: Serial #:	Micro. Hanuf :
Neter Check Classe, O Winds	creen D"A"W	etghting OFast Response CiSlow	Calibration Protestd
General Weathe Teat Conditions	r	Wind Speed	м/вес
Test No. Mensurement Location	Lp, dh	Sketch of	Test Sice
		• ! h	
		If prequalified site, 1 designation	ndicate site

14.3 BIBLIOGRAPHY

ţ

Ŷ

こううす シンシン

.....

Compressed Air and Gas Institute, CAGI-PNEUROP Test Code for the Measurement of Sound from Pneumatic Equipment, 1969.

Society of Automotive Engineers, "Exterior Sound Level Measurement Procedure for Powered Mobile Construction Equipment," SAE J88, 1974.

"Information in Support of the Proposed Regulation for Truck Mounted Solid Waste Compactors," EPA 550/9-77-204, U.S. Environmental Protection Agency, August 1977.

. .

171

TRUCKS 15

קופד רחפע אוואון אחי ה
15.0 TRUCKS

15.1 INTRODUCTION

Two truck noise measurement methods are presented in support of Article IX, Section 9.1 <u>Motor Vehicles and Motor-</u> <u>cycles on Public Rights-of-Way</u> of the Model Community Noise Control Ordinance. A stationary truck noise regulation is not provided in Article IX, Section 9.1, but an applicable enforcement method is presented here for communities desiring to adopt this type of regulation.

The two noise measurement methods presented here were selected after a thorough review and analysis of current available sound level test procedures for trucks. Figure 15.1 presents the evaluation matrix used in selecting these methods. In addition, the methods for automobiles (Figure 5.1) were also reviewed.

The passby and stationary noise test methods for trucks are similar to those for automobiles and buses. The height of the microphone and distance from the vehicle required for the stationary test is consistent with the position required by federal Department of Transportation procedures.

172

the second second was a first first and a second
	VENICLE: HEAVY	TRUCKS			<u>EQUIPMENT</u>	-		
•	MEASURENEST METH	að _	Sound Lavel	Alcronhune	Calibrator/ Calibration Procedure	Othur Acouncical Equiument	Ather Equilation	Special Test or In-Situ SiterDescription Fastristions
	Florida - Hiymus Venicie Tesc Pro- Cadure	, nuș	Type 1,2, or SZA meeting sepilcable ANSI speci-		End-to-end with a mini- num of ever- 2 hours	- Vindacreen - (opt.) Y		 A) Standard Sits - no reflecting surface within 160' of micro- phone or microshone point.
		-	floations		Annual lab. Calibration			5) Restricted Site
•	Flarida - Nam Vehicie Test Proceture	1115 2011	Precision SLN as per ANSI specifi- cations		Calibration before and after each use or every 2 hours as a closed at	Windscreun	Techoneter Anemaleter	Flat Response. No reflecting sur- face within 100' of al microphone. B) paint 50' before microphone point, c] point 50' beyone micro- phone point.
					instrument i used < 2 hou	1 71		Grownd Surface, Smooth signals or concrete in 3 area between nicro- pisons and two 50' points.
	Hetrapalitan Vesnington	r#-511u	Tvpm 1 SLM AnSJ SI,4=1971		Before and After each Cast	Vindscreen	Tachoneter Anencester	Flat open space free of large re- flatting surfaces from vehicle or eltrophone. Surface of ground free from snow, grass, loose soil or ashes.
	Aetropat I tan Matrington	STATIONAL	Type I SLM AHSI SI.4-1971		Safara sna aftar sach tast	Windscreen	Tachometer Anonomiter	Flat open space free of large re- flacting surfaces from vehicle or aicrophone, Surface of ground free from snow, grass, louise toil or ashes.
<u> </u>	Chicaya, Ili, - Naw Motor Venicia Moisa Megsur am ents	HN SIN	As per SAE JIBA specifica- tions	As par SAE JIES Specifica- cions	As per SAE JIBA speci- fications. End to and and 1 hour incervals		· · · · · · · · · · · · · · · · · · ·	Normal concrete or asphalt; no reflective surfaces within 100° of sicropions or 100° of centerline of vehicle path from throatle open to throttle glassipaint. Growne clear of standing weter.
	Chicago, III, - Notor Venicle Operation Noise Neosure- Neat	1k-513u	As per SAE JIDA 19etifics- Clone	As per SAE J184 specificar tions	As per SAE JIEN spect- flactions. End to and and I how intervals	•		Praferrad locacion 199º clear aras dround aicrontons and microphone peint, Surface of ground normal, highway without water.
	Barringcon, 111, - Vehicle Hoise Enforcement Procedure		As per SAE	As per '	Safare and after tach (set or every 2 hours as ainimum	As per SAE	,	Nighmay • a) <u>Standard Lice</u> : Mg reflect- ing surfaces within IGB ¹ radius of elera- phome and eleraphone point. B) <u>Restricted</u> Liter reflecting surfaces elenin IGG ¹ , All sites: constate or espheit; no tunnels or overfecting ins reflecting sur- faces, within IG ¹ .
	Ainneapolla, Ainn.* Adduromnt fro* Caduro	11-5-11-	Any sound Lavel meter Ho standard	Any alero- ptone No standard		Viniscraan Noten appropriate ¹³	<u>-</u>	Comerate or asyneit roadway surface; dry and free of bumps or cracks.
	SAE J10)4 - maas. of Est, Sound Lyvels for many Trucks - Statlunary		Typa I Ansi	542 	Sound level caliarator -0.5 J& "end Co-end"	Raq, Tape Accardar (opt.)	Windscreen opt. Engine Speed Tack.	Flat, open-free of reflecting surfaces for 100' - hard, num- porous surface
-	Srand Rapids, Rich, - Sta- Lionery Potor Vanicia Test		7-pe 2 SLN ANSI SI.4-1971		Callbrated at 1000 Hz at start and end of sach test taries. Annual callbraw tiom of callbrator.	Windscrean with less than 3.5 dB affect on system sen- sitivity	Anamumeter With 2103 Securacy. Tachumeter SIS accur racy. Data sheets.	Surface - Jry, hard concrete level
	Arugan - Cupe. uf Environ- mical quality New Vahicle Tuse		<u> </u>		Calibration each time used. Yaariy lab. calibration	¥Indacreen used	Sçandard form	Free of sound reflecting objects within Su' of microphone and Su' of vehicle.
	Neneli • Venicie 📮 Reise Control 🔤 Reise Lavel 🛓 Reasurement		No speci- fication	Na speci- fication	Callbrator meting MSJ SI.4~1971	Vindsgraan 'Winn Appropriaten	•	ûry roemney. Concrete er esphelt, no louse meteriel.

•

173A

مدين المربي المربي المربي المربي المعاد المربي

.

							VEHICLE SPERATION			
Perceptologicai Criteria/ Constitutes	Reflecting Surfaces/ Criteria/ Corrections_	. Bechground Ambient Roise Criterie Torrections	Aigraphone Saurcu Oiscence/ Carrectim	Aicroanone Grientation/	Stationery Engine Degration	Passav/ Iperation	Luss Liany Equipment <u>Specifica</u>	fersonal Jacquert		
aind detacity ∝ast be ∖l2 appr	Namograph for corrections for perailed re- flacting surfaces. Non-perailed sur- faces must be log' from algraphone ind persur point.	Amahlant must be 10 dž belices vehicle Ly	50° Hay be 26° to tid'. Correc- tions to 54° Included	2'-6' aboye rosoway surface;]j' soove surface on which micrograme stands		Ngraai highwev operation		Jrivar, tach- nician. Tecn. trainad and cartified by higmway patrol.		
vina velocity . < 12 mph ,		Amblent notse must balla de lower thum venicle notse	50° 21° from cancerline of venicle pach	ξ ⁴ E I ⁴ showe the rūseleaγ		Highest gear so the vonicia begins at < 2/3 max. rpm and ends at lass than max. rpm and < j5 mph, full thrott	C Ulch' and witho equipment	ut		
ding velocity c (g mps	· · · · · · · · · · · · · · · · · · ·	At laarst 10 di laamaa thaan venicin moisa	r 50° (15 m) from canter- ling of lama of travel	4ª abuve grownd allane	- p	O moh at 25' from Disronone point. Isa iomust gear to hat 25' past micro- mone point engine i It mas, rated rpm.	Marmai angina Esun, Allou I din, sabih Batwasn cuts B	Observer Jnj Jriver, Jilo- Jone Jdditirnu Jerson wichi- JQ' af venici or microshuny		
(10 mpn Ving velocity		At least 10 dB lower than vehicle moise	r 50° (15 a) frum cantarm lime of lame of travel	4º abava ground plane		10 men at 25' from higrophone point. Ise lowest gaar to that 25' past wicro- phone point angine 1 at max, rated rpm.	normal engine tame, Ailon I ein, cosling Secure runs S	Coserver and Jriver, allows one additional person within 50' of vehicle or alcrophone		
Vina 10606 < 12 .mn	Ne reflecting surfaces. 100 ⁴	10 dil baton ver histo sound Tavat I	50° 21° from contertine of vehicle travel	Alcrophene on 63* ant. cable on tri- ped. %* ti* secre turface.	4 9 1 2	ute, trans, (ist ear) Standard trans, Ind guar), wide apu hrnttim, 50° before icrosnone paint,	.	Griver, tech- nician, no close than 50° from alcrowhome or remicia		
	Correction table for large infinkt- ing surface at impat 20' a 20'	iĝ di belcer te- higia sound ievel	50' from can- tarting of traffic	On tripped on eat. cable 50' from center of treffle lang, 4 24' amove surface				Tachniclan, na ang within 50° ta year ar sile at micropione		
Vine velocity <12 meň	Nonserach far carrections for paraital re- flecting surfaces. Non-maraital sur- faces must be 100° from algrowhome and pasty coint.	Ambient at least 10 de lower than venisie mûle	50' Corrections - far from 28 to 118'	l'-é' segva roadway surfaca: J.5' segve eleroprume surface				Oriver and termician, no erner sadpie wirrin 50'		
	•	Ambleng + yehicle + ambleng + 3 d0	Naisa laval critaria givan at 201, 251 and 501			Difference limits for 335 mm and <35 mm				
eins Jelocity f 12 min		Systanders at least 50° behind reader. At least 10 uil leaver than test vehicle	50' from can- tarline of ven histe V Jaque ground gerpeneiculer to centerline to rear of cam	, ,	Assimum env acceleratio and Jacain no ast, lor Normal enq Loros, - Tra neutral, fu Uhrottle to idie	jina Sh ration 14. Ins Sht. 21. 2		Technician trained and ex- perienced in the type of equipment test		
na precipitan tian na mina i li anti	<u></u>	frag af rafiacting surfaces	Record amaient naise and cor- ract later - , must 3e & uk below reasing	sa' addia ground tomard venicia as per manufacturar	Trans, na Uccateraci idle to au erned spat upen throu	acrai or from La, jov d * ttla,	Turn aff ail dumilidry dcuip= ment	Not mure lien - Jersons		
Ving clQ mph Tain cannot ta Tailing, Ground can be wet.			251 14 ¹⁶ from rear ar aithur sidm af vahiata	Position is at max. Ly. 4.5' above the ground or orientam tion as per speca.	Soun throit to reach ma recon, rpm mex. povern rpm	ia 4. or ed				
		Amplent cannot be graeter chan venicie alone	20°+40°, Use spherical spreading law to normatize to cole distance					· · · · · · · · · · · · · · · · · · ·		
			1	71 B						

1

ł

•

Figure 15-1

Heavy Truck Noise Measurement

Squared Quanes i cy Haagu card	Sound Quancisy Annorted	Maasuramant Statisticai Mgasuramants	Giber Sats Reported	Paferences	Sther Community
Anut Lo as ven hidiq jassas	Highese Ly se		California Highway Patro "Sound Measurement Proce dures" HPH 83.3	 -	— <u></u>
A-vit La fast relemina estimue as ve- nicle passes	Average of two highway readings within 2 dB of each Gener on each Gide	t runs/side of yaniciaa		Cellfornia Vanicia Jound Asacuranant Procedure	focularacian cast unan warrancad
fast spansa A-wc. is (work Ass. ibye I noted	Average of two highest on each tide (within 3 db). Lowert of two averages in reported.	t runsfelde of vehicle or fer Lide producing omviouely higher lowels			2 d8 gr446
Fast rasponse Anet, natuests Aas, lavel netad	Avorage of two highest on each tide (within 2 dB). Loudett of two averages is reported.	à runs/sida of vehicia ar far sida producing abviausly Righer laveis	· ·	~	2 dB graca
Amet fast faspēnsa, mia, lavai netai	nightest of Data sides	4 runs/side. Average of 2 hignest (uithin 2 dž) for each side		SAE Procedures	
Ame fant Fitomisa, ata, lavel				4. 2 3 19 19 19 19 19 19 19 19 19 19 19 19 19	fleation carras- los factor 1s los factor 1s los factor 1s moler. O usa te mate compre- matus. J dä race given.
	Antima Aret Invel				
Amet, Jass response, Recard nighest reading, Awarage Righest 2 read- ings each ings each	Report Alga- dat sida deteraga				
Arme, fast respanse, Record mas, reading of mater, Arm rage highest two readings on eact wide	Measure raad- ings on each annsust out- iet, hegert highest side arefage				
Nighass iaund Iaval Ams fast raspinsa	Hignest sound largi mich is na eurs thas i di above nant hignest level				· · · · · · · · · · · · · · · · · · ·
A-me fact response, max, level					<u></u>

-CASURE-CHT

15.2 TRUCK PASSBY: MEASUREMENT PROCEDURES

15.2.1 PURPOSE

A method for obtaining sound level measurements of trucks operating on thoroughfares is described below. It is difficult to control site conditions which affect the accuracy of sound level measurements at a road measurement site. If the preferred site cannot be established, adjustments to sound level measurements may be necessary. These adjustments are discussed in Section 2.3.

15.2.2 INSTRUMENTATION

The instrumentation necessary for the procedures includes a Type 2 (or better) sound level meter (per ANSI S1.4-1971 specifications); a sound level meter calibrator accurate to ±.5 decibel; an anemometer (wind speed indicator) accurate to ±193 at 20 km/hr; and a windscreen recommended by the microphone manufacturer. The windscreen shall be used at all times. Use of a windscreen reduces the influence of wind induced noise at the microphone.

The sound level measurement system shall be checked annually by its manufacturer or a certified laboratory to verify its accuracy.

15.2.3 PERSONNEL

Persons responsible for conducting sound level measurement procedures should be trained in the operation of sound

174

and a second s

level meters and familiar with the test procedure and corrections which may have to be applied.

15.2.4 MEASUREMENT SITE

The preferred site used for measurements shall be flat, open and free of reflecting surfaces such as parked vehicles, signboards, buildings, or hillsides, within a 30 meter (98.5 ft.) radius of the microphone and a 30 meter (98.5 ft.) radius of a passing truck (Figure 1) at the lane of traffic closest to the microphone. Sites may be prequalified at various locations in the community.

. For those sites which do not meet the above specifications, adjustments to the measured noise level values are required. These adjustments are discussed in Section 2.3.

Within the area specified above, the highway shall be straight. The surface of the ground in the measurement area shall be hard, dry, and free from snow, standing water, soil, or other extraneous material.

15.2.5 VEHICLE OPERATION

Vehicles are observed during normal roadway operation. When measuring the noise level of a given vehicle, other vehicles on the same roadway shall be outside of the measurement area shown in Figure 1.

15.2.6 MEASUREMENT PROCEDURE

DECT DODU AULI

Mount the microphone (or sound level meter/ microphone combination) on a tripod at a height of 1.2 meters (4 ft.) ±8 cm (±3 in.) above the ground. Locate the microphone

Figure 1. Truck: Stationary Test Procedure

at a distance of 15 meters (50 ft.) from the centerline of the lane of traffic. If the microphone cannot be located 15 meters (50 ft.) from the traffic lane, adjustments are then made to the sound level measurements to correct them to the standard distance. The adjustments are discussed in Section 2.3. The microphone shall be oriented per manufacturers' specifications.

Set the sound level meter to "fast" response and A-weighting. Observe the meter as the vehicle passes the microphone. Note the highest observed sound level on a data sheet (Figure 2).

Measurements shall be made only when the A-weighted sound level, including noise from wind and sources other than the vehicle being measured, is at least 10 decibels lower than the sound level of the vehicle. Background ambient sound measurements shall be made immediately before and after measurements or at regular intervals not to exceed 10 minutes.

Measurements shall not be made when it is raining or snowing, or when wind speed exceeds 20 km/hr (12 mph).

Measurements shall not be made during environmental conditions (temperature, humidity) which the instrument manufacturers deem unacceptable.

An external calibration of the sound level meter shall be made at regular intervals not to exceed 2 hours. If the calibration differs by more than 1 decibel, measurements taken between calibrations shall not be considered valid and the sound level meter shall be adjusted.

DECT AAAV 1111 - ------

<u>.</u>....

.

/

FIGURE 2. EXAMPLE: VEHICLE HOLSE MEASUREMENT REPORT FORM

Examiner:	، و و د المان المان و روم و روم المان المان و مع	Date;	Ti	11112 I
Vehfele:		Теар Тура:		
Vehleta Hake:	Vehicle Type:	I.I cense ;	Model:	Year
Reglatered Owner:	······	Address:		
Operator:	Ideense #:	hdress;		
Sound Level Neter Manuf: Type:	Callb	rator Nanuf: Type:	Miero. Man Ty	uf:
Neter Check O Batt. fi Hadac	reen CI"A" Weij	ghting Official Response Official Contemponation	Callbration	ProtentdB PoultentdB
General Venther Test Conditions Conditions	<u></u>	Wind Speed	m/800	
Test No. Measurement Location	L _p , dB	Sketch of	Test filte	
				
,				
		If prequalified site, 1 designation	pdicate site	
I]

المراجع والمراجع والمراجع والمراجع والمنافع والمنافع والمتحاف والمحافظ والمراجع والمحافظ والمحافظ والمحافظ والمحافظ

~

DECT COBY AVAILADE 1

15.3 TRUCKS: STATIONARY TEST

15.3.1 PURPOSE

The purpose of this stationary noise test procedure is to provide a method to measure truck sound levels which is repeatable and defensible. The stationary test can be accomplished at a preferred site under desired operating conditions.

15.3.2 INSTRUMENTATION

A Type 2 (or better) sound level meter (per ANSI S1.4-1971 specifications); a sound level meter calibrator accurate to ±.5 decibel; an anemometer (wind speed indicator) accurate to ±10% at 20 km/hr; an engine speed tachometer^{*} accurate to ±5% at full scale deflection; and a windscreen recommended by the microphone manufacturer are required. The windscreen should be used at all times. Use of a windscreen reduces the influence of wind induced noise at the microphone and protects the microphone.

The sound level measurement system shall be checked annually by its manufacturer or a certified laboratory to verify its accuracy.

15.3.3 PERSONNEL

Persons responsible for conducting sound level measurement tests should be trained in the operation of sound level meters and familiar with this test procedure.

*Two different tachometers may be required; one for spark ignition engines and one for diesel engines. See Section 3.7.

1.79

anna an the table to the second state of the test of the test of the second second to the second second to the second test of the second s

15.3.4 TEST SITE

The site shall be flat, open and free of reflecting surfaces, such as parked vehicles, signboards, buildings, or hillsides, within 15 meters (50 ft.) of the vehicle and the microphone. An empty portion of a parking lot may be satisfactory.

15.3.5 VEHICLE OPERATION

Turn off all auxiliary equipment which is installed on the motor vehicle and not associated with operation of the vehicle while in transit. The engine shall be at normal running temperature with the transmission in neutral or park. Attach the tachometer per manufacturer's instructions. A governed engine is accelerated to maximum governed speed with wide open throttle. If the engine is not governed, it is accelerated to engine speed corresponding to maximum horsepower.

15.3.6 MEASUREMENT PROCEDURE

חדמד החפע אוואוו

 Set the sound level meter on A-weighting and "fast" response. Place the microphone on a triped 1.2 meters (4 ft.) ±8 cm (±3 in.) above the ground in the position shown in Figure 2. A point is established on the centerline of the lane in which the vehicle is parked and within 1 meter (3.3 ft.) of the longitudinal position of the vehicle's exhaust system outlet. The microphone shall be located 7 meters (23 ft.) from this point and along a perpendicular to the vehicle's side.

190

والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

Observe the sound level meter as the truck is operated as described in Section 15.3.5. Measurements are valid when the background ambient A-weighted sound levels, including noise from wind and sources other than the vehicle under test, are at least 10 decibels lower than the noise from the vehicle under test. Observe the background ambient sound level before and after each test.

Note vehicle model, noise measurement results, and other pertinent data on a data sheet. (Figure 2 contains a suggested format.) For trucks with dual stack exhausts, repeat measurements on each side of the vehicle.

Measurements shall not be made when the wind speed exceeds 20 km/hr (12 mph) or when it is raising or snowing.

Measurements shall not be made during environmental ' conditions (temperature, humidity) which the instrument manufacturer deems unacceptable.

An external calibration of the sound level meter shall be made before and after each series of measurements. If the calibrations differ by more than one decidel, the measurements shall be repeated after the instrument is adjusted.

A stationary truck noise seasurement is shown in the following photograph.

DECT CODV AVIAN

المراجع المستحمين المراجع المراجع المراجع والمراجع والمستجوع وأراف

م مهد الإيران رادن راديمه بمهمه مستعمل التر

Figure 3. Example: Vehicle Noise Measurement Report Form

Examiner:	 	Date:	TI an	e;
Vehicle:	Test Ty	pe:		
Vehicle Make:V	chicle Type:	l.lconse:	_Nodel:	Year
Reglatered Owner:	Address	• <u> </u>	<u></u>	
Operator:	1.1 сепне #:	Addreau:	<u> </u>	
Sound Level Mater Manuf: Type: Serial #:	Calibrator M '' Seria	Micro. Manuf : Type : Serial # :		
Meter Check O Bart, O Window	een D"A" Weighting	Ci Past Response A Slow	Calibration	Pretest Posttest
General Meather Test Conditions Conditions	Wind S	peed	m/sec	
Measurement Engine Test No. Location Speed (rpm)	L _{p.} , dB	Sketch of '	feat Site	
······				
				[

.* ·

1 ...

183

- E - 1443

التلاز

15.4 BIBLIOGRAPHY

Barrington, City of, "Vehicle Noise Enforcement Procedures," City Code 14 (Barrington, Ill.).

Bolt, Beranek and Newman Inc., "Chicago Urban Noise Study," BBN Report 1411, Nov. 1970 (Chicago, Ill.).

California, State of, "Ca'ifornia Vehicle Code: 1973," Section 27160 (Sacramento, California).

Council of Governments: Metropolitan Washington, D. C. "Areawide Noise Measurement Procedures Manual."

Department of Transportation Bureau of Motor Carrier Safety Regulations for Enforcement of Motor Carrier Noise Emission Standards, 41 FR 23267, July 1976.

Florida, State of, "Highway Vehicle Test Procedures," Dept. of Pollution Control, Supp. No. 50, Chapter 17-18, Vehicle Sound Measurements.

Grand Rapids, City of, "Stationary Motor Vehicle Tests," Chapter 151 Title IX of City Code (Grand Rapids, Mich.).

Minneapolis, City of, "Noise Code: Chapter 389," Pollution Control Division, Highway Vehicle Test Procedures (Minneapolis, Minn.).

Oahu, City of, "Community Noise Control for Oahu," Dept. of Health, State of Hawaii: Chapter 44B (Oahu, Hawaii).

Oregon, State of, "Motor Vehicle Sound Measurement Procedures Manual," Dept. of Environmental Quality, Doc. NPCS-21.

Society of Automotive Engineers, "Exterior Sound Level for Heavy Trucks and Buses," SAE J3666.

Society of Automotive Engineers, "Measurement of Exterior Sound Level of Heavy Trucks under Stationary Conditions," SAE J1096.

U.S. Environmental Protection Agency, "Draft Bus Model Noise Ordinance."

المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع